美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。

  美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。

  與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。

  但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

相關連結
相關附件
※ 美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6621&no=645&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
海藻抗溫室 日明年試驗

  日本海洋科學家最近提出一項對抗溫室效應的新計畫,準備在日本東北部外海養殖大片海藻,吸收大氣中二氧化碳。且這些海藻還可以轉化成生物質能,為人類提供大量乾淨的能源。相關技術一旦試驗成功,日後將可望納入聯合國氣候變化綱要公約京都議定書的修訂條文,並推廣到其他濱海國家。    過去科學家一直認為,海藻生長過程中雖然會吸收大氣中的二氧化碳,但是排出的醣類物質也會被細菌分解,釋出的有機碳將再次轉變成二氧化碳。不過歐洲海洋學家最近研究發現,這些海藻排出物會帶著有機碳快速沉入深海,不至於影響大氣中的二氧化碳濃度。   計畫領導人、東京海洋大學能登谷教授的團隊打算在海上安置一百個面積一百平方公里的特製網,用以固著兩種生長快速的藻類-馬尾藻與「 Sostera marina 」,形成一百座飄浮的海藻田。一年之後,每一座海藻田會生長成重達廿七萬噸的龐然巨物,並且在光合作用過程中吸收卅六噸的二氧化碳。海藻田上將配備電子裝置,讓科學家以全球衛星定位系統追蹤,一旦飄移而影響航道,就必須拖回原來位置。這些海藻田最後將拖回陸地,經過超高溫技術處理,產生氫與一氧化碳,再轉化為燃燒時不會釋出二氧化碳的生物燃料,可謂一舉數得。    美國在一九七○年代曾試驗類似的「巨藻計畫」,但後來因為大量生長後回收的海藻難以處理,計畫因此束之高閣。但日本科學家突破這項難關,設計出可行的海藻再利用方法,於是讓「以海藻吸收二氧化碳」的構想重現希望。

新加坡未來移動數據流量的疏通計畫之觀察

  Cisco於2012年2月發布預測2011至2016年全球行動數據流量將從2011年每月0.6 Exabytes上升至2016年每月10.8 Exabytes,以高達78%的年複合成長率(CAGR, Compound Annual Growth Rate)逐年攀升。根據此數據,新加坡亦預測其國內行動數據流量將以64%的年複合成長率,從2010年3.1Petabytes上升至2015年37 Petabytes。目前新加坡的電信業者為因應與日益龐大的數據流量,已著手嘗試各項商業模式,包含分級訂價(tiered pricing)、流量管理政策(traffic policy management control)、網路最佳化(network optimisation)、既有基礎建設升級(upgrading of existing infrastructure)以及採用如長期演進技術(LTE,Long Term Evolution)等新興技術和行動數據疏導策略(Mobile data offloading strategies)的發展。   另外職掌新加坡電信政策的新加坡資訊通信發展管理局(IDA Singapore),於2012年4月亦針對4G通訊系統及服務,提出頻譜重新分配之建議書,並諮詢各界之意見,以因應下階段全球移動數據領域之發展。IDA於建議書中計畫擬定以1800MHz、2.3GHz以及2.5GHz作為未來發展4G技術的主要頻段。為滿足產業所需之頻譜量,IDA預計於1800MHz頻段分別釋出2*70的對稱頻譜(paired spectrum)、於2.3GHz頻段釋出30MHz的非對稱頻譜(Unpaired Spectrum),而於2.5GHz頻段則同時釋出2*60MHz的對稱頻譜與30MHz的非對稱頻譜。除了釋出足夠頻譜外,為考量未來技術實驗以及電信業者發展全國性網路服務可能需求2*20MHz的對稱頻譜或20-30MHz的非對稱頻譜,IDA亦分別於前述三個頻段中預留2*5MHz(1800MHz)、20MHz(2.3MHz)以及於2.5MHz區段中預留2*10的對稱頻譜與20MHz的非對稱頻譜。   不過目前受到各國推崇的700MHz頻段卻未被新加坡納為現階段孕育4G技術的主要區域,同時對於900MHz是否於本次拍賣一同釋出以發展4G技術,新加坡政府仍持保留態度。對此,新加坡主要業者包括SingTel與StarHub皆已向iDA提交回覆建議書,表達此舉不符合國際未來發展趨勢並期待IDA能重新作出調整。

日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險

日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國紐約州通過「防止非法侵入與加強電子資料安全法案」

  2019年7月25日,紐約州州長Andrew Cuomo簽署「防止非法侵入與加強電子資料安全法案」(S.5575B/A.5635/Stop Hacks and Improve Electronic Data Security Act, 又稱SHIELD Act),目的在讓處理消費者個人資料的企業承擔更嚴格的責任。其核心精神在於,一旦發生與資料外洩相關的安全漏洞時,能及時進行適當的通知。同時,修改紐約州現有的資料外洩通知法,擴大個資蒐集適用範圍、個資定義 (例生物特徵、電郵資訊等)及資料洩漏定義、更新企業或組織之通知程序、建立合於企業規模之資料安全要求。此外,如違反通知義務,將處以最高5千美元或每次(未履行通知義務)20美元 (上限25萬美元)的民事賠償。且美國司法部長(The Attorney General) 亦得以紐約人民名義,代為起訴未實施資料安全規畫的企業,並按紐約民事執行法與規則(The Civil Practice Law And Rules)第63條進行初步救濟,依法強制禁止侵害行為繼續發生。該法預計將於2020年3月1日生效。   當天州長亦簽署「身份盜用預防措施和緩解服務修正案」(A.2374/S.3582),新增資料外洩安全保護措施,要求消費者信用機構,提供受安全漏洞影響的消費者「身份盜用預防措施」(Identity Theft Prevention )與「緩解服務」(Mitigation Services),為消費者制定長期最低度的保護手段。其要求信用機構,通知消費者將有關社會安全號碼的資料洩漏事件進行信用凍結,並提供消費者無償凍結其信用的權利。該法預計將於2019年10月23日生效,並且溯及既往適用該法案生效之日前三年內所發生之任何違反消費者信用安全的行為。

TOP