在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。
美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。
與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。
但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。
日本正式敲定今年版智慧財產權推動計畫日本為了提高產業競爭力,於 2002 年提出智財戰略計畫,並於內閣中設戰略本部,由首相小泉純一郎領導,每年並仔細擬定當年度的智慧財產權推動計畫。在今年剛定案的「二零零六年智慧財產權推動計畫」中,以開發或利用大學的智慧財產及加強與產業界的合作並提出對付仿冒品等的對策為重點。 根據「二零零六年智慧財產權推動計畫」,未來將加強整合大學內部的大學智慧財產本部與民間的技術移轉機關( TLO ),以便集中運用人才、研究成果。計畫也將建立一套可簡便利用專利或論文的資料庫系統,預期明年四月起可供利用。 日本的大學院校去年在國內取得專利權的有三百七十九件,大學將專利技術移轉至民間組織件數在二零零四年度有八百四十九件,藉由技術轉移所得收入為三十三億日圓,雖然這些表現相較於以往年度均有所成長,但日本不論在專利件數或收益上,都與美國相差甚遠,日本政府為了加強國際競爭力,認為有必要加強產、學界的合作,故「二零零六年智慧財產權推動計畫」也規劃,大學院校若有意到海外申請專利權,政府將補助申請費;此外,原本只限定優惠大學正副教授的專利申請費減免措施,也將及於研究所的學生等,以期促進大學內部研發。
美國2015年「消費者隱私權法案」簡介 澳洲數位轉型局12月發布《政府負責任使用人工智慧政策2.0》,以強化公部門之AI風險管理2025年12月初,澳洲數位轉型局(Digital Transformation Agency,下稱DTA)發布《政府負責任使用AI政策2.0》(Policy for the responsible use of AI in Government 2.0),旨在進一步強化公部門在AI的透明度、問責性與風險管理能力,於2025年12月15日生效,取代 2024年9月實施的過渡版本。 一、適用範圍 政策適用於所有非企業型聯邦實體(Non-corporate Commonwealth entities),即不具獨立法人地位、直接隸屬於政府的機關或單位。企業型聯邦實體則被鼓勵自願遵循。政策定位為「補充與強化既有法制」,非另訂獨立規範,因此在實務中須與公務員行為準則、資安規範及資料治理制度併行適用。 二、政策重點 在政策施行的12個月內,適用機關須完成以下要求,以確保落實AI治理架構: (一)制度建置 1. AI 透明度聲明:機關須在政策生效後 6 個月內發布「AI 透明度聲明」,公開 AI 使用方法與現況。聲明中須說明機關風險管理流程、AI 事件通報機制及內外部申訴管道,確保使用過程透明、可追蹤。 2. 人員指定與培訓: 機關須指定制度問責人員(Accountable officials)以及AI使用案例承辦人(Accountable use case owners)。 所有員工皆須進行關於負責任使用AI的培訓,機關並依員工職務權責提供個別員工進階訓練。 3. 建立內部AI使用案例註冊清單(Internal AI use case register),以供後續追蹤 該清單至少包含: (1)使用案例負責人(Accountable use case owners):記錄並持續更新範疇內 AI 使用案例的指定負責人。 (2)風險等級(Risk rating):AI使用案例的風險等級資訊。 (3)異動紀錄:當使用案例的風險評級或負責人變更時,須即時更新清單。 (4)自定義欄位:各機關可根據其需求,自行增加欄位。 (二)AI 使用案例範疇判斷 機關須在評估所有新案例,依以下特徵判斷AI應用是否屬於「範疇內(In-scope)」的應用: 1.對個人、社群、組織或環境造成重大損害。 2.實質影響行政處分或行政決策。 3.在無人工審查的情況下,大眾將直接與AI互動或受其影響。 4.涉及個人、敏感資料等資訊。 (三)進階風險評估 依AI影響評估工具(Impact Assessment Tool)針對公眾近用權;不公平歧視;加重刻板印象;損害人、組織或環境;隱私顧慮;資料敏感之安全顧慮;系統建置之安全顧慮;公眾信任等8類別,加以判斷範疇內AI應用,若有任一類別被評為「高風險」,即判定為「高風險」;若所有類別中最高的分數為「中風險」,則整體判定為中風險。 判定為中、高風險之AI應用,均需進行全面審核。中風險須列出所有中風險項目及其控管措施,主要為內部控管;而高風險則要求向DTA報告,且每年至少進行一次全面審核與風險再評估。 澳洲欲透過發布AI透明度聲明、更新AI使用案例註冊清單、強制執行AI應用之風險評估及人員培訓,確保公部門對AI的負責任使用與問責。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,落實AI資料管理與追蹤。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)