美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。

  美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。

  與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。

  但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

相關連結
相關附件
※ 美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6621&no=67&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
美國聯邦法院裁定執法部門無搜索令要求提供手機位置記錄並未違憲

  美國聯邦第六巡迴上訴法院於2016年4月13日就U.S. v. Timothy Ivory Carpenter & Timothy Michael Sanders案作出判決,裁定執法機關在未取得搜索令的情況下要求出示或取得手機位置記錄,並不違反憲法增修條文第4條。美國憲法增修條文第4條規定:「人人具有保障人身、住所、文件及財物的安全,不受無理之搜索和拘捕的權利;此項權利,不得侵犯;除非有可成立的理由,加上宣誓或誓願保證,並具體指明必須搜索的地點,必須拘捕的人,或必須扣押的物品,否則一概不得頒發搜索令。」   本案事實係聯邦調查局取得兩名涉及多起搶劫案之嫌疑人的手機位置,而根據手機位置之相關資料顯示,於相關搶案發生之時間前後,該二名嫌疑人均位於事發地半英哩至兩英哩的範圍內,故該二名嫌疑人隨後被控多項罪名。在肯認與個人通訊相關之隱私法益的重要性的同時,聯邦第六巡迴上訴法院認為,「縱使個人通訊之內容落於私領域,但是為了將該些通訊內容自A地至B地所必須之資訊,則非屬私領域之範疇。」聯邦第六巡迴上訴法院拒絕將憲法增修條文第4條的保護延伸至像是個人通訊或IP位址等之後設資料(metadata),其原因在於,蒐集此等資訊或記錄並不會揭露通訊的內容,因此本案之嫌疑人就聯邦調查局所取得之資訊並無隱私權之期待。法院認定,此等行為不同於自智慧型手機取得資訊,因為後者「通常而言儲存了大量有關於特定使用人之資訊。」   2015年11月9日,美國聯邦最高法院拒絕審理Davis v. United States案,該案係爭執搜索令於執法部門要求近用手機位置資料時之必要性。加州州長Jerry Brown於2015年10月亦簽署加州電子通訊法(California Electronic Communications Act, CECA),該法禁止任何州政府的執法機關或其他調查單位,在未出示搜索令的情況下,要求個人或公司提供具敏感性之後設資料。

日本自動駕駛戰略本部新近政策規劃

  日本鑒於為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於2016年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於同年12月9日召開第一次會議。討論的範圍則包括:為實現自動駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。   會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「以非平地休息服務站為據點的自動駕駛服務」等議題速成立工作小組,將對自動駕駛所應用技術進行各類型實證試驗。   其中,在「以非平地休息服務站為據點的自動駕駛服務」方面,已於2017年2月展開補助試驗計畫的募集;預計驗證的項目有分別針對一般(搭載2-10人)以及大型車輛(10人以上),結合GPS、雷達、攝影機等來瞭解障礙物資訊的車輛自動控制技術。   而在「大卡車列隊行走」方面,國土交通省則是在2016年已開始的實證試驗基礎上持續拓展。未來在2019年中後,並規劃將驗證範圍擴展至高速公路上驗證更長距離的自動駕駛。

瑞士ESG新法規正式生效

  全球多個國家目前正在促進企業推動「環境、社會和公司治理」(Environment, Social Responsibility, Corporate Governance, ESG)事務,以瑞士為例,有關ESG的新法規於2022年1月1日正式生效。   在2022年1月1日生效的提案中,主要是對《瑞士債法典》(The Swiss Code of Obligations, CO)提出修正,包含「涉及公共利益(public interest)的企業應提出ESG事項報告」與「企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查(Due Diligence)」,分別說明如下: 一、公共利益企業應提出ESG事項報告 依《瑞士債法典》第32章新增的第6節「非財務事項之透明度」(Transparency on Non-Financial Matters)規定,符合條件的上市公司或受監管實體等公共利益企業,每年應提出一份單獨的非財務事項報告,內容須涵蓋環境事項、社會問題、員工相關問題、尊重人權和打擊腐敗等議題,以及公司對該等議題所提出的政策措施、風險評估和實施績效等資訊。此報告經企業內部最高管理層與治理機構批准後,須立即於網路上公開,並確保至少十年內可供公眾存取。 二、企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查 依《瑞士債法典》第32章新增的第8節「與來自受衝突影響地區的礦物金屬以及童工相關的盡職調查和透明度」(Due Diligence and Transparency in relation to Minerals and Metals from Conflict-Affected Areas and Child Labour)規定,所在地、總部或主要營業地點位於瑞士的企業,如在瑞士自由流通或加工來自受衝突影響和高風險地區(conflict-affected and high-risk areas)的特定礦物或金屬,抑或產品或服務被合理懷疑是使用童工製造或提供而成,原則上即須遵守供應鏈中的盡職調查義務,每年亦應將其遵守情況編制成報告。此報告應在會計年度結束後的六個月內於網路上發布,並確保至少十年內可供公眾存取。

何謂「阿西洛馬人工智慧原則」?

  所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。   該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。   其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。

TOP