在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。
美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。
與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。
但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
美國實務界律師2023年6月9日撰文指出,人工智慧(artificial intelligence,簡稱AI)將對智慧財產法律和策略帶來改變,大部分企業熟悉的改變是目前仍有爭議的法律問題—由AI工具產生的發明創造是否為專利或著作權適格的保護標的。但除此之外,AI工具對於創建和管理智慧財產組合(IP Portfolio)的方式也已發生改變,並介紹以下五種利用AI工具協助管理智慧財產組合之方式。 1.簡化先前技術之檢索 無論是評估新產品的可專利性、評估競爭對手之智慧財產權之相關風險、抑或是回應侵權索賠,企業均須了解特定領域之先前技術,因應此需求,全球已有大量公司提供先前技術檢索服務,惟AI工具的出現使得企業可自行進行先前技術檢索。例如知名的文件審查平台Relativity創造了Relativity Patents,使用者輸入專利號碼等特定關鍵字即可進行先前技術檢索;美國專利商標局亦為了審查官開發一種AI工具,提升其確認先前技術之準確性及效率。 2.協助專利申請文件撰寫 對於專利申請人而言,可使用AI工具協助草擬專利申請範圍,有些企業甚至會運用AI工具自動化撰寫專利申請文件,惟使用AI工具撰寫專利申請文件時,應留意提供AI工具的資料是否會保密,抑或有向第三人提供之風險。此外,AI工具撰寫之內容建議仍須雙重確認內容正確性及適當性,如引用來源及內容是否正確。 3.改善商標維權能力 企業可使用AI工具協助監控潛在的侵權及仿冒產品,有鑒於現今網站及社群媒體仍有大量未經商標授權的賣家存在,AI工具可作為審查貼文及識別商標侵權案件之工具,相較於傳統的人工審查可更有效率。 4.協助商標檢索作業 於美國、澳洲、歐盟、中國,甚至世界智慧財產組織導入AI工具協助審查官進行商標審查,包括以關鍵字及影像標記之搜尋功能,此一工具不僅可簡化商標申請和註冊審查程序與時間,亦有部分國家提供使用者自行檢索之功能,使企業可進行更快速、有效率之商標檢索,使其於品牌保護策略上節省不必要之時間及金錢。 5.支持策略性專利組合管理 AI工具亦可協助專利組合管理,包括最廣的專利範圍、評估是否需繼續維護專利、或是評估擬收購專利之價值,以AI工具協助評估以上事項,雖無法完全取代人工進行策略評估,惟可顯著減少勞動力支出。 AI工具改變了智慧財產組合創建及管理之方式,雖然AI工具不能完全承擔管理智慧財產權組合之職責,但AI工具在專利/商標檢索、專利申請文件撰寫、專利權評估、商標維權等方面已可大量減少人力及管理成本,有助於企業智慧財產組合管理,惟企業及使用者須留意使用AI工具的資料管理問題,以避免機密資訊遭到外洩。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
新加坡通過第一個個人資料保護法制新加坡於2012年10月15日通過該國第一個消費者個人資料保護法案,該法案主要規範私人機關蒐集、利用以及揭露個人資料之行為,將於2013年1月正式施行。 該法案亦成立新加坡個人資料保護委員會(Personal Data Protection Commission, 以下簡稱PDPC),並成立拒絕來電登記處(Do-Not-Call Registry),該處由PDPC進行維運。PDPC將是新加坡主要掌管個人資料保護的主管機關,而且也負責推動個人資料保護法案以及被賦予增進新加坡人民個人資料保護認知之任務。 於該法案之規劃中,資料當事人可以在拒絕來電登記處註冊其位置在新加坡之電話號碼,以防止私人機關為了商業行銷之理由而進行電話行銷。假設資料當事人已完成相關登記卻持續收到行銷電話時,可以向PDPC進行申訴。 除此之外,私人機關於蒐集、儲存個人資料前,必須尋求消費者之同意,而且必須通知當事人資料蒐集之目的。私人機關於傳輸個人資料至新加坡境外時,也必須確保以提供相對安全的個人資料保護作法,例如透過契約或者協議之簽訂等。 違反個人資料保護法規之公司,每一個違反事件可能被科以最高美金820,000元之罰鍰,對於每一個消費者最高可能必須負上美金8200元之賠償責任。法律施行後,企業被賦予18個月的法規遵循準備期間,而停止打來登記處預計將於2014年年中設置完成。
歐洲食品管理局發佈「基因改造動物所衍生的食品及飼料與基因改造動物的健康與福利之安全評估」指導文件雖然歐盟未曾批准基因改造動物所衍生的食品與飼料之市場應用。然生物科技發展迅速,許多歐盟境外的國家已發展許多關於基因改造動物科技之應用。是故,歐盟基於此類基因改造動物所衍生的食品與飼料可能對歐洲整體食品安全及環境帶來影響評估,而由歐盟執委會(European Commission, EC)要求歐洲食品管理局(European Food Safety Authority, EFSA)在歐盟第1829/2003 號規章(Regulation EC No 1829/2003)之架構下,發展關於「基因改造動物所衍生的食品及飼料與相關動物的健康與福利,以及對環境影響之安全評估」的綜合性的指導文件(Guidance),預計發布兩份指導性文件,第一份即為此份指導文件,其係針對「基因改造動物所衍生的食品及飼料」以及「基因改造動物的衛生與福利方面」兩方面的風險評估,在歷經2011所進行的公眾諮詢(Public Consultation)後,EFSA於2012年1月26日正式公布。該份指導文件內容並未包含「基因改造動物衍生之食品與飼料」對於環境所產生的影響之評估,EFSA另行制定第二份指導文件做為評估之依循,目前初稿已制定完成,並進行公眾諮詢,而可能於近期發佈。 因畜牧而豢養的動物之健康狀態,向來作為衡量此類農畜食品與飼料的安全之重要指標,本指導文件即以此指標作為整體基本假設。故該指導性文件之發展策略即以傳統飼養的動物健康狀態及其所衍生的食品與飼料作為安全衡量的基底標準(Baseline);並同時發展合適於「基改動物」與「衍生的食品與飼料」,各自的不同比較尺度的評估方法。其評估重點如下: 1.分子特性之評估,係提供針對動物插入一個穩定基因特徵(Trait)的結構描述之資訊之評估; 2.毒性物質之評估,針對基改動物以及衍生之食品與飼料所可能導致生物上改變之影響; 3.新蛋白質的誘發性過敏評估,係針對所有基改動物所衍生的食品所可能導致過敏之評估; 4.營養性評估,係針對所有的基改動物所衍生的食品與飼料對於人類或傳統飼養動的營養評估。 5.針對基改動物衍生的食品與飼料上市後的監測調查(Post-Market Monitoring, PPM),辨識此類基改食品與飼料在上市後可能的潛在之影響 此指導文件另一重點,即對於基因改造動物的健康與福利之評估,這項評估指標之重要性在於: 1.基於動物倫理,即對於動物本身之健康與福利之衡量; 2.動物本身的健康與福利之情形,亦被視為動物衍生產品之安全之重要指標。 綜上,此份指導文件建構出關於申請此類「基因改造動衍生食品與飼料」上市前的安全評估所必須提供的特定資料之內容架構,並結合即將發布的第二份關於環境影響評估的指導文件,做為上市前的綜合安全評估之依循。
日本公布「資料與競爭政策檢討會報告書」並探討資料收集利用違反《獨占禁止法》行為近年來,受到物聯網和人工智慧技術高度發展影響,大數據的重要性逐漸提昇。為避免資料不當收集和資料被不當佔據等可能妨礙競爭之行為,以利業者透過資料收集、累積和分析等方式,創造出新的產業價值,日本公平交易委員會於競爭政策研究中心設置「資料與競爭政策檢討會」,自2017年1月至6月間舉辦數次檢討會,並於2017年6月6日公布《資料與競爭政策檢討會報告書》。該書一共5章,內容為第1章檢討背景,第2章回顧資料環境變化與利用現狀,第3章檢討現今競爭政策及《獨占禁止法》,第4章資料收集、利用相關行為,以及第5章企業結合審查等與資料利用相關之事項。 報告書指出,業者不當收集資料和不當佔據資料等行為,均有適用《獨占禁止法》之可能。前者係指具有優勢地位的業者,利用關係要求有業務往來的企業提供資料等行為,如原本只需要性別和年齡資訊,卻額外要求對方提供住所、電話等訊息;後者則係指業者利用不正當方法與顧客聯繫,排除其他競爭者等行為,如排他性交易、拒絕交易、差別待遇等。