著作權侵權暫停了妙娃種子園藝盆的銷售

  3D列印設計分享網站Shapeways在週五收到從任天堂神奇寶貝國際公司一個停止侵權的函(cease and desist),是有關於藝術家Claudia Ng的類似神奇寶貝妙娃種子的陶瓷園藝盆設計,他將園藝盆在Shapeways網站上販售,但Shapeways在收到警告信函後移除了網站上的產品列表。

  根據Claudia Ng所述,任天堂神奇寶貝國際公司是要求所有有關此模型相關的收益。原本產品列表上並未直接將神奇寶貝遊戲名稱用於此盆栽設計名稱,Claudia Ng標註牠是植物怪獸(succulent monster),但產品列表中數次提及了神奇寶貝公司。最新版的設計將近2.5英吋(6.5公分)高,售價為49美元,目前有多種顏色提供銷售。

  Claudia Ng表示:我想這是落於衍生和轉化著作的範疇,我並非一個律師,但我猜測這至少是最廣義的相關法規解釋裡。發生這件事我並不意外,只不過我原本預期該公司會追蹤的是那些有更多侵權設計的人。雖然我承認我個人喜愛的神奇寶貝啟發了我的靈感,但不是神奇寶貝的粉絲也都會喜歡這設計的原因就在於神奇寶貝本身的動物本質(generic-ness)。大多數都公認牠像一隻肥貓。而且我也被要求去設計其他的動物或生物。

  Claudia Ng可能會被安排和任天堂神奇寶貝國際公司接觸,雖然他無法確定從這場可能的會議中會發生甚麼事。

  3D列印設計分享上有可能設計的產品會侵害他人權利,設計者在靈感啟發上到設計成品時皆須有避免侵權的考量,以免不只無法獲利也有侵權的風險。

相關連結
※ 著作權侵權暫停了妙娃種子園藝盆的銷售, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6627&no=67&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

《2022年保護美國智慧財產法》公布至今,所造成的影響仍有待觀察

繼2023年1月5日美國總統拜登(Joe Biden)簽署《2022年保護美國智慧財產法》(Protecting American Intellectual Property Act of 2022)並生效後,至今尚未見任何根據該法規展開行動的報告,不過各界仍相當關注該法案的動向,因為其與過往的經濟制裁措施有著顯著的差異。 《2022年保護美國智慧財產法》與其他經濟制裁措施之差異包括: 1.僅針對營業秘密之重大竊盜,不包括其他智慧財產權如專利、著作權等; 2.未要求行為人主觀是為他國政府之利益而竊取營業秘密; 3.法規中使用到關鍵術語的標準及定義較少; 4.某些制裁措施具有強制性; 5.制裁的對象不僅包括竊取美國營業秘密者,也包括從他人竊取美國營業秘密中獲利者; 6.營業秘密盜竊行為須有合理可能性或已經對美國國家安全、外交、經濟、金融穩定構成重大威脅。 雖然《2022年保護美國智慧財產法》即將成為重要的政府工具,以解決營業秘密損失及其對國家安全之影響,且允許當事人面臨營業秘密訴訟或威脅時,將制裁措施武器化,但仍有部分問題有待解決,包括: 1.營業秘密受各州法律管轄,各州之管理機構是否會制定自己的營業秘密定義標準? 2.若在訴訟進行期間實施制裁措施,將產生甚麼影響? 3.是否產生《經濟間諜法》(Economic Espionage Act)之待審案件?美國司法部(US Department of Justice)是否必須參與? 4.判斷是否制裁的標準與美國司法部所採用的《經濟間諜法》之標準是否相同?若不同,則差異為何? 5.當事人或法院是否知道判定營業秘密盜竊行為時該適用什麼證據標準?(法規僅規定由總統決定) 6.法院能否將此類制裁措施作為其決策的一部分? 儘管《2022年保護美國智慧財產法》所衍生的問題及將產生的影響尚有待觀察,但建議企業採取下列合規措施,以避免成為美國新制裁措施的目標,包括: 1.制定並實施合規的營業秘密保護政策與程序; 2.對員工進行教育訓練,使其瞭解有關《2022年保護美國智慧財產法》的基礎知識以及對營業秘密之管理要求; 3.對有可能被盜竊營業秘密的流程進行稽核審查。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

歐盟執委會對荷蘭T-Mobile併購Tele2一案展開第二階段的反競爭調查

  荷蘭電信商T-Mobile NL根據歐盟併購條例收購Tele2 NL一案使執委會擔心其合併可能導致價格上漲,並損害荷蘭消費者的權益。   本交易案主角為德意志電信(Deutsche Telekom, DT)的子公司T-Mobile NL,以及Tele2的子公司Tele2 NL,兩者分別是荷蘭手機電信市場的第3大和第4大業者。T-Mobile NL在去年12月宣布將以2.21億美元的現金收購Tele2 NL,並持有合併後公司25%的股權。本併購案將使荷蘭的手機電信商數量從4個減少到3個。但合併後的新公司仍無法超過前兩大電信公司KPN和Vodafone。   DT表示,合併後的公司將在T-Mobile品牌下運營,新公司由於規模增長,將能夠打破目前KPN與Vodafone的雙佔市場。結合原來2間公司的資源,可以帶給電信市場更有效的競爭,並有利於5G佈局。   執委會的初步調查確定了以下主要爭點: 目前T-Mobile NL和Tele2 NL 在荷蘭手機電信市場相互競爭。執委會擔心本併購案會減少市場參與者的數量,使剩下的業者更不願進行有效競爭。可能導致價格上漲和投資減少。   執委會還打算進一步調查另外2個問題: 合併後電信商數量的減少可能會削弱競爭壓力,並增加電信商聯合行為的可能性,並提高價格; 除了4家擁有基礎設施手機電信商之外,還有一些活躍在市場中的虛擬電信商,它們使用其他業者的基礎設施向消費者提供電信服務。   執委會擔心,未來虛擬電信商如想利用基礎設施,可能遭受更多阻礙。

基改種子與專利品銷售後使用限制之爭議-美國判決之觀點

TOP