歐盟執委會以聯合行為處罰智慧卡晶片製造商1.38億歐元

  據調查,英飛凌(Infineon)、飛利浦(Philips)、三星電子(Samsung)及瑞薩電子(在當時為日立與三菱之合資公司) (Renesas,Hitachi 及Mitsubishi)在2003年9月至2005年9月間,藉由雙邊接觸以串謀有關智慧卡晶片相關事項;歐盟執委會認為該些公司在歐洲經濟區內(EEA)有對於智慧卡晶片之聯合行為,違反歐盟反托拉斯法(Cartels)。執委會因此對其處罰138,048,000歐元。瑞薩電子因符合2006年之寬恕告知(2006 Leniency Notice)而向執委會揭發智慧卡晶片之聯合行為,故免除罰鍰,三星因配合調查而減免30%之罰鍰。

  該些進行聯合行為之公司係藉由雙方接觸來往決定個別回應顧客要求降價之方式。他們討論並交換機密之商業資訊,包含價錢、客戶、契約協商、產能或產能利用率及未來之市場行為。該行為違反了禁止聯合行為和限制商業活動之歐盟運作條約(TFEU)第101條及歐盟經濟區協定第53條。

  負責競爭政策之執委會副主席Joaquín Almunia說: 在這個數位時代,不管是在手機、信用卡或護照裡,幾乎每個人都在使用智慧卡晶片。製造商應藉由創新及以最佳的價格提供最好產品之方式,致力於勝過競爭對手。若製造商不這麼作,反而選擇串謀,而造成消費者利益的損失,應受到制裁。

  最初,執委會希冀藉由2008年調解通告(2008 Settlement Notice)而尋求與部分公司和解之可能性。然而,基於調解協商之進展緩慢,執委會遂於2012年決定停止調解而回歸至正常程序。

相關連結
※ 歐盟執委會以聯合行為處罰智慧卡晶片製造商1.38億歐元, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6677&no=67&tp=1 (最後瀏覽日:2025/08/17)
引註此篇文章
你可能還會想看
美國食品及藥物管理局發布含有奈米物質藥物和生物製劑的最終版指引

  奈米科技發展愈加成熟,藥物和生物製劑包括主成分、賦形劑等都可能使用奈米物質,奈米藥品可包括口服藥、注射劑及局部外用藥,且適應症亦愈來愈多樣化。隨著奈米藥物申請送審的件數增加,美國食品及藥物管理局(U.S. Food and Drug Administration, USFDA)對於此類藥物的審查,除了依既有的藥品審查原則,亦必須針對奈米物質粒徑小的特性,評估粒徑之改變,是否會影響藥品製劑安全性、療效及品質。   美國食品及藥物管理局於2022年4月22日發布含有奈米粒子藥物之最終版產業指引,該指引的範圍涵蓋生物製劑以及基因治療,其要點包含:相關藥物開發原則、品質、研究具體考量因素,以及學名藥的簡易新藥查驗登記申請方式(Abbreviated New Drug Application, ANDA)。   USFDA 曾於2017年12月18日發布該指引的草案,在綜整各方意見後,本次最終版指引新增兩點修正,首先是於第27頁以下新增指引裡常用的26個名詞解釋,以協助讀者理解該份指引的重要術語;其次是學名藥廠於查驗登記時不能只證明製劑相等性,更要提供藥物動力學、藥理學、毒物學等證據以證明足夠的生物相等性,才可取得上市許可。   台灣目前仍在藥事法與特定醫療技術檢查檢驗醫療儀器施行或使用管理辦法,甚至過渡至再生製劑管理條例之法令結構調整過程中,並深受國內醫療環境與產業現況的影響;面對新興藥物研發方法在後疫情時代的快速發展,對產業可能帶來的衝擊與影響,如何並重藥物監理的審驗標準與前瞻性的促進更多有助新興藥物的發展,助益於我國老齡化社會結構的轉變,可更前瞻的參考USFDA最終版指南與標準,以加速台灣細胞治療或奈米藥物發展。

美國第9巡迴上訴法院於2015年7月6日宣布Multi Time Machine v. Amazon案的見解

  美國第9巡迴上訴法院(9th Circuit)於2015年7月6日對外宣布Multi Time Machine v. Amazon案的見解,其推翻地方法院看法,認定被告Amazon公司提供的服務有侵害原告Multi Time Machine公司商標權之虞。   本案原告Multi Time Machine公司是一家製作手錶的廠商,在被告Amazon公司的網站上有提供零售服務。原告認為被告網站提供之服務,可使消費者搜索網站內的物品,但其所得之結果(含圖片)卻容易令人混淆,如搜尋原告的MTM手錶(為Multi Time Machine之商標),會將商標權人及其他廠商的商品都包含在內,導致消費者誤認為其他廠商手錶也是由MTM製造,進而購買非原告公司生產之手錶。原告因而向地方法院提出訴訟,認為被告Amazon公司侵害其商標權,違反聯邦法典內之Lanham Act的第1114條(1)(a)及第1125條(a)(1)規定。但洛杉磯地方法院認為被告行為並未侵害商標權,原告不服故提起上訴。   第9巡迴上訴法院採用1979年AMF v. Sleekcraft Boats案認定之方式,並於2011年Network Automation v. Advanced System Concepts案後發展出的測試標準,用以判斷有無侵害商標權。其標準包含:1.商標的強度、2.商品近似或相關連程度、3.與商標的相似性、4.實際混淆之證據、5.銷售管道、6.消費者在意程度、7.被告意圖、8.擴展之可能性。上訴法院認為,本案除了3、5、8三項較無關外,其餘5項因素經法院研究結果,原告商品在被告網站上販售時,1、2、7於原告影響較大,而4、6是被告提供服務(即供消費者購買)時須在意的。因此,綜合判斷之結果,被告行為已可能侵害原告之商標權,故推翻地方法院之判決結果,發回地方法院續行審理,本案後續判決進展及結果實值持續觀察。

肯塔基州上訴法院認為,未經當事人同意即使用臉書上之tag功能標示出該當事人,並無違法

  美國肯塔基州上訴法院於月前駁回一名女子所提出的監護權認定案的上訴。該女子之上訴理由中提到:法院所據以決定監護權之證據之一,乃是未經她同意即被其他人標示出該女子姓名,並放在臉書(Facebook)上供人點閱、瀏覽的照片。但該州上訴法院並不同意這個看法,其在判決中指出:目前並無任何法律要求他人必須先取得該女子之同意後才能對之攝相,並上傳至臉書或其他網站;此外亦無任何法律規定其他人不得將該女子之姓名標示(tag)於這些照片上。   暫撇開其他法律不談,此一案件引人思考之與個人資料保護相關之處至少有二:首先,是關於法律適用的部分,亦即,如本案發生在日後個人資料保護法開始施行後的台灣,則該法第51條第1項(註1)之排除規定是否適用的問題;其二則是法律政策的部分,究竟在這個資訊數位化且易於搜尋的網路時代,為個人或家庭活動目的而毫無設限(例如本案之供不特定人瀏覽)的利用他人之個人資料是否確無為保護個人資料為著眼點之規範必要?(在肯塔基州這個案子裡,此一「無規範」的結果或許是正面的,但在其他的許多狀況,可能並非如此。)   註1:個人資料保護法第51條第1項:「有下列情形之一者,不適用本法規定:一、自然人為單純個人或家庭活動之目的,而蒐集、處理或利用個人資料。二、於公開場所或公開活動中所蒐集、處理或利用之未與其他個人資料結合之影音資料。」

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP