日特許廳開始提供WIPO資料庫商標公報資訊

  日本特許廳公開表示,從本年度11月27日起,將開始提供日本商標公報訊給世界智慧財產權機構(WIPO)所建置的世界最大規模之商標資料庫「Global Brand Database」,今後民眾將可以在前述資料庫中搜尋到登載有日本商標註冊資訊的商標公報。如此一來,日本廠商將可以在一個資料庫中完整搜尋到包含日本商標在內的商標資訊,對於日本廠商擬定全球品牌策略將可以提供許多便利。

  「Global Brand Database」是WIPO所免費提供的資訊供應服務,在這個資料庫上,一般民眾可以公開使用,進行商標申請案或已註冊商標的檢索,及查照詳細資訊。在2011年3月WIPO啟動這項服務時,當時還只有累積國際註冊商標、依里斯本條約登記的原產地名稱及依巴黎公約登記的國家徽章等,從2013年2月開始,也陸續放入世界各國商標申請案或已註冊商標的資訊。如今,在「Global Brand Database」上已經可以查到16個國家商標主管單位的商標資訊。在2014年11月20日的時間點上,該資料庫約存放有1400萬筆的資訊,而從2014年5月起也開提供了上傳圖片檔案檢索類似圖形商標的圖像檢索功能。

  目前參加「Global Brand Database」資料庫資訊提供服務的國家包括美國、澳州、加拿大、新加坡、紐西蘭、瑞士、菲律賓、丹麥、以色列、蒙古、埃及、柬埔寨、愛沙尼亞、阿聯酋、阿曼、阿爾及利亞等16個國家,中國、韓國並未參加。

相關連結
※ 日特許廳開始提供WIPO資料庫商標公報資訊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6694&no=0&tp=1 (最後瀏覽日:2026/01/11)
引註此篇文章
你可能還會想看
美國創新戰略推動下科技政策與重要法案之觀察

中國大陸之國家互聯網信息辦公室發布《國家網絡安全事件報告管理辦法》

中國大陸之國家互聯網信息辦公室於2025年9月11日發布《國家網絡安全事件報告管理辦法(下稱網安事件管理辦法)》,並將於2025年11月1日施行。網安事件管理辦法規定中國大陸之境內建設、營運網路或透過網路提供服務的網路營運者,於發生網路安全事件時的報告程序。 網安事件管理辦法值得注意或供我國參考有二者:一、與委外廠商之契約以其協力報告義務:該辦法第5條要求網路營運者應當以契約等形式,要求網路安全、系統維運服務提供商(含個人)向網路營運者報告監測發現,並協助網路營運者依辦法報告網路安全事件。簡言之,其透過法律監管網路營運商與委外廠商之間的契約或類似契約,以及報告之協力義務。二、個人資料與網路安全的關聯性:網安事件管理辦法透過《網絡安全事件分級指南》將網路安全事件分為1.特別重大網路安全事件、2.重大網路安全事件、3.較大網路安全事件、4.一般網路安全事件,四種分級。除關鍵基礎設施的中斷運行以外,前三個事件分級將100萬人、1000萬人、1億人以上公民個人資料丢失或被竊取、篡改、假冒,認定為較大網路安全事件以上等級,使大型網路安全事件與個人資料進行連接。換言之,網路安全事件不再僅是資安面的影響,公民個人資料完整性等法律概念逐漸進入資安領域,法律專業的投入將可能是網路安全發展中需審酌的範疇。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

海藻抗溫室 日明年試驗

  日本海洋科學家最近提出一項對抗溫室效應的新計畫,準備在日本東北部外海養殖大片海藻,吸收大氣中二氧化碳。且這些海藻還可以轉化成生物質能,為人類提供大量乾淨的能源。相關技術一旦試驗成功,日後將可望納入聯合國氣候變化綱要公約京都議定書的修訂條文,並推廣到其他濱海國家。    過去科學家一直認為,海藻生長過程中雖然會吸收大氣中的二氧化碳,但是排出的醣類物質也會被細菌分解,釋出的有機碳將再次轉變成二氧化碳。不過歐洲海洋學家最近研究發現,這些海藻排出物會帶著有機碳快速沉入深海,不至於影響大氣中的二氧化碳濃度。   計畫領導人、東京海洋大學能登谷教授的團隊打算在海上安置一百個面積一百平方公里的特製網,用以固著兩種生長快速的藻類-馬尾藻與「 Sostera marina 」,形成一百座飄浮的海藻田。一年之後,每一座海藻田會生長成重達廿七萬噸的龐然巨物,並且在光合作用過程中吸收卅六噸的二氧化碳。海藻田上將配備電子裝置,讓科學家以全球衛星定位系統追蹤,一旦飄移而影響航道,就必須拖回原來位置。這些海藻田最後將拖回陸地,經過超高溫技術處理,產生氫與一氧化碳,再轉化為燃燒時不會釋出二氧化碳的生物燃料,可謂一舉數得。    美國在一九七○年代曾試驗類似的「巨藻計畫」,但後來因為大量生長後回收的海藻難以處理,計畫因此束之高閣。但日本科學家突破這項難關,設計出可行的海藻再利用方法,於是讓「以海藻吸收二氧化碳」的構想重現希望。

TOP