中國大陸政府持續就行動遊戲等出版物之行政審查流程進行簡化和加速

中國大陸政府持續就行動遊戲等出版物
之行政審查流程進行簡化和加速

科技法律研究所
法律研究員 蘇彥彰
2014年12月02日

壹、部分出版審批程序調整為「後置審批」制

  繼今年8月取消和下放45項行政審批項目,取消11項職業資格許可和認定事項,並將31項工商登記前置審批事項改為後置審批[1]之後,11月24日時國務院再次對外公布決定取消和下放58項行政審批項目,取消67項職業資格許可和認定事項,並將82項工商登記前置審批事項調整或明確為後置審批[2];其中出版物批發業務許可、出版物零售業務許可、設立印刷品印刷經營等活動企業之審批、印刷業兼營包裝裝潢等印刷經營活動審批、音像製作單位設立審批、電子出版物製作單位設立審批、音像複製單位設立審批、電子出版物複製單位設立審批、設立可錄光盤生產企業審批等九項與新聞出版相關之項目,由前置審批調整為後置審批。所謂後置審批係指,企業可以先辦理工商營業執照後,再由主管部門申請審批,雖仍需在主管部門審批完後才可以正式展開經營活動,但企業可以在這段時間內進行公司設立的相關準備工作,提高投資主體進入市場及開展商業活動的速度。

貳、提出行動遊戲雙軌制審批程序以及擴編審查人員,以加速審批、落實管制

  除了前述針對新聞、出版、印刷等項目就行政程序進行簡化和加速工作外,中國大陸國家新聞出版廣電總局亦於11月21日公開宣示將「貫徹落實國務院全面督查整改落實」[3],其中包括對移動網絡遊戲(下稱行動遊戲)審批制度進行改革,以改善目前審批時間過長、效率不高的問題。

  依據該公告之內容,未來審批制度將朝向雙軌制方向發展,其中對於未涉及民族、宗教、歷史、政治、疆域等議題,且無故事情節或故事情節單純(如棋盤類等休閒益智遊戲)之中國大陸本地自製行動遊戲,將採取簡易審批制度以提高審查效率,同時將審查專家員額倍增至20名,以維持並提高審查品質。在上述改革推動下,目標將縮短審查時間,由現行30天初審、15天複審期限,分別壓縮至15天及5天。其進一步具體做法,中國大陸國家新聞出版廣電總局現正研擬「關於規範移動網絡遊戲出版審批管理的通知」,預計於2014年12月下旬發布施行[4]

參、小結

  近年來中國大陸國務院積極推行行政審核程序的改革,並自2002年起陸續進行了12次行政審核批准事項的取消、調整或下放,而國家新聞出版廣電總局除了持續就各項新聞、出版、發行業務的行政審查管控流程,進行簡化和加速的革新工作外,面對近幾年行動遊戲的興起,除一再重申行動遊戲須符合網路遊戲審批相關規定外,也積極處理行政審批時間過長、效率低落問題,以便落實管制。

  惟應注意的是,行動遊戲審批制度的革新,目前係以其國產遊戲為主。對此,是否會間接形成對外國業者競爭上的不對等,我方行動遊戲開發業者宜留意相關發展,納入後續遊戲開發方向與市場策略布局之評估要素一環。

[1] 《国务院关于取消和调整一批行政审批项目等事项的决定》(国发〔2014〕27号)

[2] 《国务院关于取消和调整一批行政审批项目等事项的决定》(国发〔2014〕50号)

[3] 〈国家新闻出版广电总局贯彻落实国务院 全面督查整改落实进展情况〉,中华人民共和国国家新闻出版广电总局,http://www.gapp.gov.cn/news/1663/232219.shtml(最後瀏覽日:2014/12/01)

[4] 大公網,〈廣電總局擬縮減移動網遊審批程序 12月底前實施〉,2014/11/24,http://finance.takungpao.com.hk/tech/q/2014/1124/2837153.html(最後瀏覽日:2014/12/01)

※ 中國大陸政府持續就行動遊戲等出版物之行政審查流程進行簡化和加速, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6696&no=67&tp=1 (最後瀏覽日:2026/01/01)
引註此篇文章
你可能還會想看
美國考慮修正著作權法第115條

  美國著作權局已針對著作權法第 115 條提出修正案,以因應數位科技對音樂市場造成之衝擊。美國著作權法第 115 條主要係規範非戲劇類音樂之重製 (reproduction) 與散布 (distribution) ,並同時規範此二權利之強制授權及費率核定事宜。在數位音樂時代來臨之前,第 115 條之設計允許唱片業就已錄製之歌曲,在特定費率下加以重新詮釋灌錄。不過,隨著線上音樂的流行,第 115 條有關強制授權制度之設計,已喪失原先期待之功能,而核定之費率反而成為授權雙方協商時價格之上限,對整體音樂市場之發展造成障礙。此外,由於美國境內有關公開演出權 (public performance) 及重製 / 散布權之授權分屬不同之權利人團體 ( 目前美國三大公開演出權利人團體包括 ASCAP, BMI 及 SESAC ;而有關重製 / 散布權之權利人團體主要是 HFA, The Harry Fox Agency) ,因此在數位化音樂傳輸過程中利用人必須面對不同之權利人團體,就同一傳輸行為洽談不同之授權契約,並對同一著作權人支付二次使用報酬。如此繁複的過程及額外的成本,當然使合法音樂服務業者無法與網路音樂侵權者所提供之無成本音樂抗衡。因此,在此次美國著作權局所提出的「 21 世紀音樂授權改革法」中將廢止現行第 115 條,其修正重點包括: 1. 當權利人團體 ( 新法案中稱之為 music rights organization, MRO) 合法授予處理非戲劇類音樂之公開演出權事宜時,該權利人團體亦同時被授予處理重製及散佈權授權相關事項之權利。 2. 權利人團體就數位傳輸之非戲劇類音樂之公開演出權之授權應同時包含能協助公開演出順利進行必要之重製或散佈之權。 3. 著作權人就單一著作不得授權二個以上權利人團體進行該著作之授權談判事宜。 4. 鼓勵權利人團體就其所授權之非戲劇類音樂著作列明清冊,以協助利用人確認洽商授權之對象。

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日   科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。   為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。   為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。   另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。   研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。   NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。   GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。   為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).

英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險

英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。

數位歐洲計畫(Digital Europe Programme)

  數位歐洲計畫(Digital Europe Programme)為歐盟執委會2018年6月提出的策略規畫,已於2019年4月17日由歐洲議會通過;預計2021至2027年間,歐盟將投入92億歐元用於發展高效能運算、人工智慧、網路安全和數位技能培育等領域。數位歐洲計畫目標是確保所有歐洲民眾皆能擁有應對數位挑戰所需的技能、基礎建設及相應的數位監管框架,屬於歐盟發展數位單一市場政策的一部分,預估將創造400萬個就業機會、推動4150億歐元的經濟成長,提升歐盟整體國際競爭力。歐盟為關鍵數位技術提供92億歐元科技預算分配: (1)27億歐元用於高效能運算(預計在2022至2023年建立高效能運算及數據處理能力,2026至2027年將技術導入高階設施設備)。 (2)25億歐元投入人工智慧(支持企業及公部門使用AI、建立安全便利且能儲存大量數據的運算系統、鼓勵會員國相互合作進行AI測試)。 (3)20億歐元用於網路安全技術(採購先進網路安全設備及數位基礎設施、拓展網路安全知識與技能、優化歐盟整體網路安全系統)。 (4)7億歐元投入數位技能培育(加強中小企業短期數位培訓課程、IT專業人員長期訓練、青年企業家培訓)。 (5)13億歐元用於推廣使用數位技術(鼓勵中小企業運用先進數位技術、建構數位創新中心、關注新興技術發展)。

TOP