美國專利商標局(USPTO)於2020年10月27日發布「發明AI:由美國專利觀察AI普及情形」(Inventing AI: Tracing the diffusion of artificial intelligence with U.S. patents)智財資料分析報告,本報告分析2002年至2018年共16年間美國AI專利之申請資料,發現在AI專利申請數量由3萬件成長至6萬件,成長幅度為100%,而在全體專利當中AI相關專利所占比率,也由原本的9%成長至接近16%,顯示在AI技術研發創新與普及率的顯著成長。 報告指出,自1950年圖靈(Alan Turing)提出「機器能否思考?」問題以來,現今AI技術的發展已經達到連圖靈也會讚嘆的水準,AI技術在發明領域的重要性益發提升,活躍於AI領域的發明人占全體專利權人的比率也從1976年的1%提升到2018年的25%,在組織的發明專利上也呈現相同的趨勢;除了美國銀行(Bank of America)、波音公司(Boeing)以及奇異電子(General Electric)之外,前30大頂尖的AI公司都來自資通訊領域,其中佔據首位者為擁有46,752項專利的IBM,其次為擁有22,076項專利的微軟以及10,928項專利的Google,而AI技術的應用領域也更加多元,並且與在地產業做結合,例如應用在奧勒岡州的健身訓練與設備以及北達科他州的農業上。 USPTO指出,經由專利資料分析顯示AI技術的發展不僅有顯著的成長,並逐漸與在地產業結合、落實在不同產業領域的多元應用,AI對於產業的影響力將不亞於電力或半導體,隨著AI領域發明人的顯著成長,未來將有更多AI技術在各領域的應用出現,而擴大AI影響力的關鍵在於發明者與公司能否成功將AI納入現有或新產品的功能、流程或服務之中。
日本立法保護及促進重要經濟安全資訊之利用日本國會2024年5月10日通過、同月17日公布《重要經濟安全資訊保護及活用法》(重要経済安保情報の保護及び活用に関する法律,以下簡稱經安資訊保護法),建立安全許可(セキュリティ・クリアランス)制度,規範政府指定重要經濟安全資訊(以下簡稱經安資訊)、向業者提供經安資訊之方式,以及可近用經安資訊之人員資格等事項,以保護與重要經濟基礎設施有關,外流可能影響國家及國民安全之重要資訊,並同時促進此類資訊之利用。 根據經安資訊保護法規定,行政機關首長得指定機關業務相關之重要資訊,如與關鍵基礎設施、關鍵原物料相關,外洩可能影響經濟安全之資訊為經安資訊。並得於下列情形,向其他行政機關、立法機關及司法機關、特定民間業者提供經安資訊: 1.其他行政機關:有利用經安資訊之必要時。 2.立法機關及司法機關:提供資訊對經濟安全不會有顯著影響時。 3.特定民間業者:為促進有助於經濟安全保障之行為,必要時得依契約向符合保安基準之業者提供經安資訊。 此外,經安資訊保護法進一步規定近用、處理經安資訊者,須通過適格性評價(適性評価),評價重點包括當事人犯罪紀錄、藥物濫用紀錄、有無精神疾病、有無酗酒、信用狀況等。由於上述內容涉及當事人隱私,故行政機關進行適格性評價前,須取得當事人同意。
國際再生能源總署針對各國實施「綠氫憑證」提出建議報告國際再生能源總署於(International Renewable Energy Agency, IRENA)2022年3月13日發布「能源終端使用部門:綠氫憑證」(Decarbonising End-use Sectors: Green Hydrogen Certification)研究報告,說明綠氫的部屬與使用,以及國家、區域與國際綠氫市場的發展將取決於追蹤制度的建立與接受程度。 太陽能或風電等再生能源將水電解為氫氣與氧氣後,可轉換為氫能,且因產氫過程不排碳,故此類氫能稱為綠氫。為降低溫室氣體排放、解決溫室效應與極端氣候等問題,綠氫與來自綠氫的合成燃料,在追求減少碳排放的能源轉型中扮演關鍵地位。 該報告概述了綠氫憑證制度的技術考量以及創建此類工具所需面臨的挑戰,並對政策決策者提出關鍵建議,旨在建立具備國際認證標準的綠氫追蹤制度——綠氫憑證。 綠氫憑證是指生產設備業者、貿易商及供應商等能源市場參與者,向國際再生能源憑證相關組織或當地政府登記取得其生產過程中所使用的能源來自於綠氫之證明。消費者可以透過該憑證識別綠氫的來源,並可行使相關權利。 為確保綠氫憑證及其追蹤制度達成綠氫行業既定脫碳目標,該報告提出十點建議:(1)明確「綠氫」之定義;(2)建立標準,確保綠氫電力生產來源安全可靠;(3)確保憑證能為消費者及決策者提供足夠資訊;(4)簡化行政程序,減少行政負擔;(5)實施具備成本效益的憑證追蹤制度;(6)建立適當的控制機制避免濫用或缺乏透明度;(7)應考量結合既有制度;(8)避免跨國交易時重複頒發不同國家之憑證(9)利用綠色金融標準鼓勵遵守憑證要求;(10)促進國際合作,建立全球共通之標準與規則。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。