為保護金融消費者日本金融廳研議「電子銀行法」相關立法

      二00四年十二月九日日本金融廳表示,為因應日益頻繁的網路及IC智慧卡被用以進行電子金融交易的現況,該廳將研議「電子銀行法」(暫稱)之立法以保障金融消費者,並將此納為未來施政方針。該項立法提案計劃已納入金融廳最新的金融行政方針「金融重點強化計劃」(20054月起20073月止)之中,期待在2005年至2006年度間完成立法。


  目前電子金融交易及電子現金等實務現況雖有可能涉及「電子簽章法」及「電子消費者契約法」的相關規範,惟金融廳的研究認為尚缺乏對此類交易活動的「總合性立法規範」。該立法研議甚擬導入對於因在網路上交易不慎遭受「冒名欺騙」 (?????spoofing)的被害人,由金融機構為一定額補償的制度

相關連結
※ 為保護金融消費者日本金融廳研議「電子銀行法」相關立法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=670&no=0&tp=1 (最後瀏覽日:2025/12/14)
引註此篇文章
你可能還會想看
美國參議院提出《產業融資公司法案》成立美國產業金融機構(IFCUS)助高科技產業技術發展與強化供應鏈韌性

  美國參議院於2021年8月12日提出全新《產業融資公司法案》(Industrial Finance Corporation Act),擬授權成立美國產業金融公司(Industrial Finance of the U.S., IFCUS)投資半導體、量子運算、人工智慧、網路安全、生物科技等高科技領域,旨在促進國內製造業創新和打造良好就業機會。   本法案首先點出國內在關鍵技術供應鏈上所面臨的困境,包括「國內製造商缺乏足夠的資金管道致技術工作外包,影響到美國在關鍵技術(如半導體和5G通訊硬體)生產的主導地位」、「目前美國的創新模式較依賴私人資本協助政府將研究成果產品化,然因私人資本通常會傾向尋求短期投資回報,與新興技術領域較需採長期投資發展策略有別」,以及「官方捐款計劃跟不上創新步伐使得納稅人須承擔技術創新的高風險,但卻無法獲得相應的高回報」。接著,法案提到為解決前述困境,擬藉由法案授權成立美國國有企業產業金融公司(IFCUS),以投資方式協助與經濟國家安全相關重要產業之發展,並幫助相關產業利用額外私人資金,使納稅人在承擔高風險之際,亦有機會獲取相應的高回報。   依據《產業融資公司法案》所成立之國有企業產業金融公司(IFCUS),則將支持關鍵產業彈性供應鏈、美國製造業經濟發展及就業機會、先進技術商業化、中小企業廠商與資金門檻較低廠商、易受系統性投資不足與不公平產業政策等。在具體運作模式上,IFCUS將先與私人企業合作,利用法案所授權的500億美元資本進行融資,並由IFCUS發行及提供擔保貸款、購買股權、發行債券、收購資產、創建投資設施和企業基金及投資證券化等,藉以創造更多資本額。並鑒於IFCUS為一國營單位,相對較有能力保持優良的社會環境和勞動標準,創造全國就業機會、減少環境危害及對公眾與國會負責,同時確保企業決策係為納稅人服務。最後,透過IFCUS與政府研究機構協調,建立保障措施,以及提供私人資本和政府計畫補助,鼓勵天使投資以降低市場競爭影響。簡而言之,即希望憑藉IFCUS國有企業之設立,為美國高科技製造業提供策略性投資、產經政策等具體援助,藉以強化供應鏈韌性。

日本擬以金融商品交易法對虛擬貨幣之首次代幣發行予以監管

  由日本金融廳(FSA)與各界相關人士組成的「虛擬貨幣交換產業相關研究會」(仮想通貨交換業等に関する研究会)於2018年11月2日再度召開會議,本次會議主要針對是否需就ICO監管予以討論。   按ICO,乃是指虛擬貨幣之首次代幣發行(Initial Coin Offering),即向社會大眾發行數位代幣(token),並收取主流虛擬貨幣之籌資行為。在過去,日本僅以向金融廳諮詢會報的方式督導,對於虛擬貨幣之交易所僅課予註冊義務,並未對於ICO行為予以規範。而ICO因其大量之籌資行為可能產生之風險如詐欺、非法募資或洗錢,從而日本金融廳研擬將ICO列入「金融商品交易法」規範之。   而就ICO是否有受到金融監管之必要,會議中主要之考量有以下兩點: 使用虛擬貨幣之行為是否具有金錢上融資之功能,會議中對於不具權利性質之虛擬貨幣認為無監管必要; 引入金融監督機制是否符合社會期待。   另外,會議中並就ICO和首次公開募股(Initial Public Offerings,以下簡稱IPO)進行比較,有認為,倘若ICO具有如同IPO籌集資金之經濟功能,並且也可能產生如同IPO之相同風險,理應受到相同之規範。可為之規範例如對於賣家進行最低度審查,避免透過籌資為詐欺之可能;限制權利內容模糊不清之虛擬貨幣流通,並對發行人之財務和業務狀況進行篩選;課予ICO負有如同IPO之揭露義務,並須在網站上公布對於投資人有影響性之資訊;使發行價格更有衡量基準。另外JVCEA(日本仮想通貨交換業協会)作為監管機構,擬對於ICO在銷售開始、銷售結束,甚至銷售結束後仍課予持續的情報提供義務。   而於後續2018年11月26日召開之第十次會議中,表示對於ICO在未來不會採取禁止之態度,仍保持鼓勵之立場,但對於投資人之保護需要更全面予以考量,減少利用ICO詐欺之情形。另外,對於虛擬貨幣交換業者,需要加強對客戶財產之管理和維護,亦可能對其施加信託義務,俾利加強投資人信心。   ICO在日本非常盛行,但也因此詐欺案件頻傳,對於日本將以何種方式監管ICO;對於虛擬貨幣交換業者之規範,對投資人之保護是否足夠;又或是此類規範將形成交換業者反抗,依目前會議頻繁討論之程度應很快會有定論。惟對於此種新創之產業,往往需在監管與鼓勵發展間求取平衡,而日本在虛擬貨幣之發展上,又領先亞洲各國,對於此次監管議題後續發展,實值關注,並得以借鏡我國,作為我國在相同議題上之參考。

歐盟宣部推動「展望2020」計劃

  歐盟在2013年12月3號正式通過「展望2020」(Horizon 2020)計劃,將在未來7年(2014-2020)之間,在10大領域投入770億歐元發展「尖端科學」(Excellent science)、「領導性工業」(Industrial leadership)與「社會挑戰」(Societal challenges)三大項目,以此承繼歐盟第七期科技研發計畫架構(7th research Framework Programme,FP7)所建立的基石。目前,歐盟在三大項目中,在今(2014)年發展項目分別是: 1.「尖端科學」:歐洲理事會將編列30億歐元,資助頂尖的科學家從事相關研究。此外,歐盟亦將透過獎學金的方式,鼓勵優秀的年輕研究者。 2. 「領導性工業」:透過18億的預算資助歐盟在產業領先的項目,包括是通訊技術、奈密、機器人等產業。 3.「社會挑戰」:歐盟將透過28億元解決2020年可能遇到的七個社會挑戰,例如是衛生、農業、海洋、生物科技、能源、交通、氣候行動、環境、與資源利用等領域。   在各大項目當中,因資通訊(ICT)產業占整體經濟4.8%外、且資通訊的研發設計(Research and Development) 又佔企業整體營收約25%。因此,促使歐盟在「展望2020」在ICT領域發展預算編列,高於歐盟FP746%,藉此加速資通訊技術、知識之革新與發展。至於,今(2014)年ICT在「領導性工業」發展項目中,將朝向以下6點發展: 1.下世代零組件與系統(A new generation of components and system)。 2.先進的計算(Advanced Computing)。 3.未來網際網路(Future Internet) 4.內容技術與資訊管理(Content technologies and information management)。 5.機器人(Robotics) 6.微型、奈米科技、與光電(Micro- and nano-electronic technologies, Photonics)。   綜觀上述六點,除了機器人、微型、奈米科技之新穎性,格外受人注目外,在「未來網際網路」與「內容技術與資訊管理」,亦須值得持續追蹤。在「未來的網際網路」發展上,歐盟將「智慧網路與新穎網路體系」(Smart Networks and novel Internet Architectures)、「先近雲端基礎建設與服務」(Advanced Cloud Infrastructures and Services )與「智慧光學與無線網路技術」(Smart optical and wireless network technologies)列為發展方向。   在「內容技術與資訊管理」上,巨量資料的研究(Big data-research)與創新與社群行銷的整合(Big data Innovation and take-up),則是歐盟未來1年發展項目之一。我國從2010年推動「數位匯流發展方案」(2010-2015年),其中如何促進新興媒體的發展與增加網路間競爭,一直為我國發展重點。因此,我國除了可透過歐盟所推動的「展望2020」為參考,從中思索是否具有政策盲點外,亦可成為2015年後科技政策進行先導計畫。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP