經濟合作暨發展組織(簡稱經合組織、Organization for Economic Cooperation and Development,下稱 OECD)於今年6月30日表示「2019年已有近百個國家/地區進行了稅務資訊自動交換,使其稅務機關可以獲得其居民在海外所持有的8,400萬個金融帳戶的數據,涵蓋的總資產達10兆歐元。相較於2018年(交換了4,700萬個金融帳戶資訊,約5兆歐元)有了顯著增長。」且「共同申報準則(亦稱共同申報及盡職審查準則、Common Reporting Standard, 下稱CRS)要求各國和各司法管轄區每年自動交換其金融機構提供的非居民的金融帳戶資訊,以減少境外逃漏稅的可能性。許多發展中國家已加盟其中,預計未來幾年會有更多國家加入。」 OECD秘書長Angel Gurría亦表示「由OECD創建並由全球論壇管理的這種多邊交換制度,此刻正為世界各國(含發展中國家)提供大量的新資訊,使各國稅務管理部門能夠確保境外帳戶被正確申報。尤在目前COVID-19危機中,各國正籌集急需的收入,一個無處藏富的世界,此點遂至關重要。 事實上,我國財政部於2017年11月16日所發布(民國109年4月28日修正)之「金融機構執行共同申報及盡職審查作業辦法」(簡稱CRS作業辦法),正是為了使我國接軌OECD發布及主導的CRS,藉由提高金融帳戶資訊透明度,據此與其他國家/地區進行金融帳戶資訊自動交換,以利我國與各國稅捐機關能正確且完整地掌握其境外納稅義務人的金融帳戶資訊。值得注意的是,我國第一波稅務資訊自動交換將於本年度9月份與我國32個稅捐協定國進行。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
歐盟立法成員對整體生質燃料目標仍存有不同意見為確認是否採行歐盟整體生質燃料目標(即於2020年應達20%)而欲進行協商之前夕,歐洲各政黨團體立法成員們間,對於設定環境永續性基準與將用以種植生產生質燃料作物土地等方面之意見,至今仍分歧不一。 鑑於歐洲環保團體紛盼能儘快看見那些未來將被間接利用來生產生質燃料之土地,其可一併被涵括在正式評估公式之內,來評估對整體CO2濃度影響;因此,各會員國遂轉而朝向歐洲執委會,要求其應提出詳細之規則,並希望能在將相關基準納入整體法律架構之前,完成對間接利用土地所產生衝擊之評估方法與標準的建立。 環保團體代表Turmes指出,日前執委會對歐洲議會所提出之建議提案,已表達其意見並且認為:由於對間接利用以生產生質燃料之土地其未來將對CO2排放產生衝擊方面,尚未獲得足夠之科學性證據來做為日後評估之參考;因此,就整體生質燃油利用之最終版本而言,其認為需將「新方法學」(new methodologies)部分一併納入,以填補前述科學性知識之缺口與不足。 另外,各會員國政府對歐洲議會所提出,要求透過未來利用生質燃料來達到減少碳排放目標時,至少應有40%之比例,需透過運用第二代生質燃料來達成之「附屬目標」(sub-targets),亦表示反對。目前各政府代表僅同意25%,而至於剩下之15%,則將留待後續協商時,再進行討論。 最後,Turmes指出,關於前述次要性目標之確定,歐洲議會將待解決間接利用土地問題後,再做更進一步之協商。
美國公布實施零信任架構相關資安實務指引美國公布實施零信任架構相關資安實務指引 資訊工業策進會科技法律研究所 2022年09月10日 美國國家標準技術研究院(National Institute of Standards and Technology, NIST)所管轄的國家網路安全卓越中心(National Cybersecurity Center of Excellence, NCCoE),於2022年8月前公布「NIST SP 1800-35實施零信任架構相關資安實務指引」(NIST Cybersecurity Practice Guide SP 1800-35, Implementing a Zero Trust Architecture)系列文件初稿共四份[1] ,並公開徵求意見。 壹、發布背景 此系列指引文件主要係回應美國白宮於2021年5月12日發布「改善國家資安行政命令」(Executive Oder on Improving the Nation’s Cybersecurity) [2]當中,要求聯邦政府採用現代化網路安全措施(Modernizing Federal Government Cybersecurity),邁向零信任架構(advance toward Zero Trust Architecture)的安全防護機制,以強化美國網路安全。 有鑑於5G網路、雲端服務、行動設備等科技快速發展,生活型態因疫情推動遠距工作、遠距醫療等趨勢,透過各類連線設備隨時隨地近用企業系統或資源進行遠端作業,皆使得傳統的網路安全邊界逐漸模糊,難以進行邊界防護,導致駭客可透過身分權限存取之監控缺失,對企業進行攻擊行動。為此NIST早於2020年8月已公布「SP 800-207零信任架構」(Zero Trust Architecture, ZTA)標準文件[3] ,協助企業基於風險評估建立和維護近用權限,如請求者的身分和角色、請求近用資源的設備狀況和憑證,以及所近用資源之敏感性等,避免企業資源被不當近用。 貳、內容摘要 考量企業於實施ZTA可能面臨相關挑戰,包含ZTA部署需要整合多種不同技術和確認技術差距以構建完整的ZTA架構;擔心ZTA可能會對環境運行或終端客戶體驗產生負面影響;整個組織對ZTA 缺乏共識,無法衡量組織的ZTA成熟度,難確定哪種ZTA方法最適合業務,並制定實施計畫等,NCCoE與合作者共同提出解決方案,以「NIST SP 800-207零信任架構」中的概念與原則,於2022年8月9日前發布實施零信任架構之實務指引系列文件初稿共四份,包含: 一、NIST SP 1800-35A:執行摘要(初稿)(NIST SP 1800-35A: Executive Summary (Preliminary Draft)) 主要針對資安技術長(chief information security and technology officers)等業務決策者所編寫,可使用該指引來瞭解企業於實施ZTA所可能遭遇挑戰與解決方案,實施ZTA所能帶來優點等。 二、NIST SP 1800-35B:方法、架構和安全特性(初稿)(NIST SP 1800-35B: Approach, Architecture, and Security Characteristics (Preliminary Draft)) 主要針對關注如何識別、理解、評估和降低風險的專案經理和中層管理決策者所編寫,闡述風險分析、安全/隱私控制對應業務流程方法(mappings)的設計理念與評估內容。 三、NIST SP 1800-35C:如何操作指引(初稿)(NIST SP 1800-35C: How-To Guides (Preliminary Draft)) 主要針對於現場部署安全工具的IT 專業人員所編寫,指導和說明特定資安產品的安裝、配置和整合,提供具體的技術實施細節,可全部或部分應用指引中所揭示的例示內容。 四、NIST SP 1800-35D:功能演示(初稿)(NIST SP 1800-35D: Functional Demonstrations (Preliminary Draft)) 此份指引主要在闡述商業應用技術如何被整合與使用以建構ZTA架構,展示使用案例情境的實施結果。 參、評估分析 美國自總統發布行政命令,要求聯邦機構以導入ZTA為主要目標,並發布系列指引文件,透過常見的實施零信任架構案例說明,消除零信任設計的複雜性,協助組織運用商用技術來建立和實施可互操作、基於開放標準的零信任架構,未來可預見數位身分將成為安全新核心。 此外,NIST於2022年5月發布資安白皮書-規劃零信任架構:聯邦管理員指引[4] ,描繪NIST風險管理框架(Risk Management Framework, RMF)逐步融合零信任架構的過程,幫助聯邦系統管理員和操作員在設計和實施零信任架構時使用RMF。 我國企業若有與美國地區業務往來者,或欲降低遠端應用的安全風險者,宜參考以上標準文件與實務指引,以建立、推動和落實零信任架構,降低攻擊者在環境中橫向移動和提升權限的能力,與保護組織重要資源。 [1] Implementing a Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://www.nccoe.nist.gov/projects/implementing-zero-trust-architecture (last visited Aug. 22, 2022). [2] Executive Order on Improving the Nation’s Cybersecurity, THE WHITE HOUSE, https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity (last visited Aug. 22, 2022). [3] SP 800-207- Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://csrc.nist.gov/publications/detail/sp/800-207/final (last visited Aug. 22, 2022). [4] NIST Releases Cybersecurity White Paper: Planning for a Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://csrc.nist.gov/News/2022/planning-for-a-zero-trust-architecture-white-paper (last visited Aug. 22, 2022).