歐巴馬宣布將立法保護學生數位隱私權

  美國總統歐巴馬日前表示其將訂立「學生數位隱私法」(The Student Digital Privacy Act)以確保因教育目的而被蒐集之學生個人資料將不會被用於無關之用途。換言之,該法將禁止,例如,利用所蒐集資料對學生進行精準行銷的行為,但仍會許可蒐集者利用所蒐集資料改善其所提供之軟硬體教育設備或用以幫助學生之學習品質。

  針對學生之隱私保護,目前於聯邦層級至少已有家庭教育權利與隱私法(Family Educational Rights and Privacy Act,FERPA),該法及其授權法令雖賦予學生及其家長對學校所保有之教育紀錄(educational record)之蒐集、使用有知情同意權及其他如修正教育紀錄之權利。但FERPA也列了相當多的例外情形,例如,醫療資料、受雇紀錄等均不在教育紀錄之列;此外,學校亦可不經同意即公布學生的姓名、電子郵件、出生地、主修、預計畢業日期等資料。

  學生數位隱私法未來如能獲國會通過成為法律,該法與FERPA的異同,及其內容與施行實務是否確有助於學生隱私之改善,仍有待觀察。

相關連結
※ 歐巴馬宣布將立法保護學生數位隱私權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6757&no=67&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
德國交通部與歐洲道路安全資料工作組簽署多方協議,透過車聯網分享交通狀況資料以提升道路安全

  德國聯邦交通及數位基礎設施部(Bundesministerium für Verkehr und digitale Infrastruktur, BMVI)於2020年12月2日公布與道路安全資料工作組(Data Task Force for Road Safety)成員簽署多方協議,以促進交通資料於道路維運單位、聯網車、智慧基礎設施間傳輸交換,進而透過最新技術識別道路危險狀況,以提升交通安全。   道路安全資料工作組係由歐盟成員國、車輛製造商、相關應用服務提供商所組成的公私合營夥伴關係,其任務為透過政府與產業相關利益者之合作,促進道路安全性資料可跨品牌和跨國界共享,並於公平可靠的合作夥伴關係下,促進公平競爭。   而在多方協議中,歐盟成員國,道路交通管理單位,汽車製造商和供應商以及地圖服務提供商等成員,承諾進行長期資料交換,並於協議中定義如何在安全相關交通資訊(Safety Related Traffic Information, SRTI)生態系統內,以公平、可靠的方式近用相關資料,並規定合作夥伴於SRTI價值鏈中應扮演的角色與責任,和透過分享安全相關的的資料,進而提供安全性服務。而在簽署本協議前,已成功完成可行性研究,在2019年6月至2020年10月間,不斷地測試SRTI系統並交換共數百萬筆資料,包括危險事故現場、暫時性濕滑路面、視野受限、特殊天候狀況等資訊。而在初步測試報告指出,透過上述資料交換,可發出相關危險交通狀況警告,能迅速有效因應各狀況作出適當的決策。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟推出給在中華區企業參考之網路犯罪與營業秘密保護指南

  歐盟執委會(European Commission)設有6區域中小企業智慧財產服務台(IP SME Helpdesk),其中歐洲智慧財產服務台(European IP Helpdesk)以及中華區小企業智慧財產服務台(China IP SME Helpdesk)於2022年9月聯合推出「網路犯罪與營業秘密保護指南」(Cybercrimes and trade secret protection : guide,下稱本指南),最大特色之處即在企業如何回應營業秘密遭網路竊取時之事後應對手段。   中華區中小企業智慧財產服務台透過提供免費資訊服務,支援歐盟(EU)中小企業(SME)在中國大陸、香港、澳門和臺灣保護和執行其智慧財產權(IPR),陸續發布如2020年「保護你在中華區的營業秘密」(Protecting your trade secrets in China)等一系列指導企業如何於中華區保護智財之指南。   本指南首先揭示企業營業秘密之事前保護手段,包括(1)技術手段:加強網路安全(加密資料、安裝防毒軟體、辨識雲端風險、制定網路安全策略)以及利用區塊鏈技術作為資料、證據保存的手段;(2)內外部人員管制手段:內部員工培訓與管理、第三方(市場、競爭對手)監控。而營業秘密遭竊之事後應對手段,包括(1)回應手段:確認資訊外洩原因、建立緊急處理機制(回報、蒐證流程)、採取法律步驟;(2)回復手段:控制損害(端視營業秘密是否被公開而有不同做法)、亡羊補牢(重新檢視企業智財布局、資安措施、緊急處理計畫),對於在中華區之企業,本指南作法具參考價值之外,資策會科法所發布之營業秘密管理指針2.0版亦可同步參考。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

FCC決定將限縮頻率拍賣規範

  美國政府為因應數位匯流趨勢,自 2004 年起開始逐漸釋放新的頻率執照,以供網路多媒體服務或新興通訊業者申請。不過因為先前的拍賣方式是採匿名制,並將頻率切割成小頻段拍賣,而導致競標者間共謀串連,造成拍賣價格過低的情形屢見不鮮。另一方面,由於頻率交易制度( trading )盛行,使無線網路業者為了湊足足夠頻段,必須花費更多的成本去租用或購買頻段來經營業務。以上二個因素使頻率的拍賣出現缺乏競爭的現象。   為使頻率的拍賣能夠達到競標的目的, FCC 決定更弦易轍改變拍賣的方式。 2006 年 4 月 11 日 美國聯邦通訊委員會( FCC )投票通過在 6 月 29 日 將舉辦的拍賣,除了取消以往的匿名性競標,將例外以較大的頻段進行公開拍賣,讓更多的有意願經營業務的競標者參加。   目前有部分消費者團體贊同這項決定,認為為可以終結盲目拍賣( blind bidding )的亂象,以及杜絕大企業壟斷頻段的情形。

TOP