日本首宗對網路拍賣業者提起之集團訴訟

  於日本雅虎拍賣網站 ( ????????? Yahoo! Auctions) 交易,卻遭受詐欺之五百七十二名被害者,於三月三十一日向日本名古屋地方法院對日本雅虎公司以系統缺陷 ( ????? system defect) 為由提起訴訟,請求總額一億一千五百萬元之損害賠償,成為日本第一宗對網路拍賣業者提起之集團訴訟。


   原告方面皆是二○○○年四月至今年二月間曾於日本雅虎拍賣網站出價並且得標之買家,當買家將價金匯入賣家指定之帳戶後,卻未曾收到商品。原告主張:一、雅虎對於賣家及買家收取費用,即相當於仲介商;二、雅虎對於賣家實際刊登之商品未盡檢查、核對之責;三、雅虎負有提供無拍賣系統缺陷之契約上義務,以避免損害發生的可能性。日本雅虎則以尚未收受訴狀為由拒絕發表評論。

相關連結
※ 日本首宗對網路拍賣業者提起之集團訴訟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=676&no=67&tp=1 (最後瀏覽日:2025/12/12)
引註此篇文章
你可能還會想看
澳洲發布「數位健康2018-2019年報」針對「我的健康紀錄系統」提出檢討及建議

  澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)於2019年11月發布「2018-2019年數位健康年報」,其中針對「我的健康紀錄系統」(My Health Record System)日前發生資料外洩事件提出檢討及隱私建議。   「我的健康紀錄系統」於2012年開始由澳洲數位健康局(Australian Digital Health Agency)負責維運,所有健康報告以電子形式通過網站存檔或讀取,包括處方藥紀錄、醫生診療記錄、影像檢查以及其它測試紀錄等,所有資訊將置於網路並授權醫療專業人員,例如醫生、藥劑師、醫院工作人員和專職醫療人員(例如護士或物理治療師),均可登錄查詢。   「我的健康紀錄系統」原先以民眾自願選擇加入模式運作,以選擇性線上註冊方式概括同意健康資料存取。隨後為促進醫療產業發展,澳洲政府宣布「我的健康紀錄系統」全國適用並提供退出機制至2019年1月31日。而2018年澳洲修訂「我的健康紀錄法」(My Health Records Act 2012)強化個人資料管理相關規範,例如:提供永久刪除權、不得適用於保險目的、違反關鍵隱私保護而增加民事和刑事處罰等。   「2018-2019年數位健康年報」指出,隨著「我的健康紀錄系統」於2019年2月從選擇性註冊模式變為退出模式,關於隱私疑慮的查詢和投訴大幅增加。2018年至2019年OAIC收到57件投訴案,OAIC更對數位醫療產業中的受監管企業進行隱私評估,包括私人醫院、藥房等。為解決民眾疑慮,「我的健康紀錄法」修訂賦予永久刪除權,使投訴數量開始遞減,OAIC亦為醫療服務提供者發布有關保護患者個人健康資料相關指引,並與衛生部門組織合作,促進良好的隱私保護觀念,以增進健康服務提供者對預防和應對資料外洩的理解。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

奈米技術可能對健康與環境產生危害,專家呼籲應加強檢測與管制

  美國環境保護局(US Environmental Protection Agency)考慮對使用於殺菌或抑菌功效之奈米銀予以列管,這項決定與Samsung推出的洗衣機產品有關,這項新產品強調在洗衣的過程中,加入一種可以殺菌的奈米銀物質(nano-silver),不過這項物質卻被認為可能會釋放對人體及環境有害的物質,導致EPA決定加強管理。   奈米技術是有關極小化物質的創造與使用的技術,且極小化物質的尺寸僅比原子大一點,約在一奈米及一百奈米之間,一奈米等於是十億分之一尺,人類的頭髮大約是八萬奈米。除了洗衣殺菌的功能外,奈米銀已因為殺菌的功能而被廣泛用在諸多產品中,包括鞋、襪、儲存容器等等。目前政府與業界一般假設,以既有管理化學物與其他物質的法規來管理奈米物質,尚稱妥適。   就在EPA考慮對使用在殺蟲劑中之奈米銀予以列管之際,環境科學專家也呼籲政府及業界應正視奈米物質潛藏的危害,儘速制訂檢測及管制之法規。舉例而言,本(十二)月初在自然雜誌(Nature)所刊登的一篇有關奈米技術安全性挑戰的文章指出,雖然現今許多有關奈米毒性的探討都是基於學說假設,但這些學說其實具有高度的可信度。   新近有關奈米物質毒性的研究調查報告更顯示,從細胞培養物及動物體內可發現,奈米物質的大小、表面積、可溶性與其可能的形狀等,均可能與毒性之所以產生的原因有關。專家因此擔心,在研究人員積極推出奈米級產品的同時,恐怕對於奈米物質可能產生毒性的問題,未予以適度的重視。因此,EPA目前跨出的雖僅是管理奈米技術的一小步,但環境專家認為,對於公眾健康與環境安全的保障來說,這代表邁向正確方向的一大步。

演算法歧視將適用於《紐澤西州反歧視法》

2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。

TOP