為因應日本2014年接連發生重大營業秘密外洩之事件而使日本國內公司蒙受鉅額損失,日本經濟產業省於去年9月開始,積極地展開《不正競爭防止法》修法專家會議,並在2015年1月15日舉行的會議上,揭露了彙整各界公開意見後之《不正競爭防止法》中期報告書(中間とりまとめ),以作為未來修法方向之指引。
該報告書列出之修法方向區分為民事及刑事規定。第一,民事的修正重點有以下三點:(1) 減輕原告(受害企業)之舉證責任,而改由被告(非法使用營業秘密之企業)負擔;(2) 除斥期間之延長:將現行法規定之除斥期間,由10年延至20年;(3) 使用非法營業秘密而製造的物品,禁止轉讓或出口;以及新增邊境措施之規範。
第二,刑事的修正重點則有以下六點:(1) 擴大國外犯罪的處罰範圍:目前現行法僅規範「日本國內所管理之營業秘密」在國外「使用、開示」 之行為,未來將新增處罰在國外之「取得」營業秘密之行為;(2) 新增未遂犯規定,同時將繼續檢討新增共犯及教唆之處罰態樣;(3) 現行法僅規範竊取營業秘密者本人以及藉由前者直接不法取得營業秘密者為處罰對象,但鑒於智慧型手機、平版電腦等裝置(携帯情報通信端末)之普及,造成營業秘密的竊取及使用型態趨向多樣化,是故未來將新增第三人不法取得之相關處罰規定;(4) 使用非法營業秘密而製造的物品,禁止轉讓或出口:新增相關刑罰規定;(5) 法定刑之提高:目前個人最高罰金為1000萬日圓、企業則為3億日圓,未來預計調整罰金之上限;並且,將新增沒收犯罪收益及海外加重處罰之規定;(6) 擬由告訴乃論改為非告訴乃論。
綜上,經產省力爭在2015年1月26日開始的通常國會期間內,依上述之改正要點為基礎,正式提交《不正競爭防止法》之修正案,預計最快將於2016年開始實行新法 ,後續的立法進度,值得吾人持續關注。
美國國家創新與創業諮詢委員會(National Advisory Council on Innovation and Entrepreneurship, NACIE)於2024年2月8日發布「透過創業提高競爭力:美國創新策略」(Competitiveness Through Entrepreneurship: A Strategy For U.S. Innovation)報告,其確定改善與協助美國創業精神之三大關鍵領域,並提出十項建議,敦促政府消除創業活動障礙,增加新創公司獲得人才、資金之機會。 NACIE由企業家、創新者、投資人、學者與經濟發展領導者組成。由商務部長責成其確定如何使美國繼續成為改變典範之創新來源、以及將創新推向市場之泉源。NACIE於此報告中所確認之三大關鍵領域與十項建議之內涵簡述如下: (1)關鍵領域1:發展未來產業(Growing the Industries of the Future) 美國雖於能源、自動化、人工智慧、量子科學與生物科技等創新領域取得商業上之成功,但對於產業創新仍存有四大威脅,包括國家機關間之協調、研發投資之持續減少、大學研發產品商業化受阻與境外製造之風險。 建議1: 成立國家創新委員會(National Innovation Council),由科學技術政策辦公室主任(Director of the Office of Science & Technology Policy)擔任主席,成員包括相關內閣秘書、國家科學基金會(NSF)主任、美國專利商標局(USPTO)局長與美國首席技術長(Chief Technology Officer, CTO),倡導全國創新與創業並協調相關聯邦政府活動。 建議2: 恢復與擴大國家投資,使創新登月計畫成為可能—大幅增加聯邦對關鍵技術之研發投資,使美國在未來成長產業中發揮領導作用。 建議3: 啟動國家創新加速器網路(National Innovation Accelerator Network, NIAN)—一個由加速器、輔導、投資計畫與創業支持組織組成之虛擬“網路中之網路”(“network of networks”),旨在大規模增強社會各方面之包容性創業能力。 建議4: 為聯邦資助之研究與開發提供智慧財產權激勵措施;制定政策與激勵措施,促進聯邦政府資助之創新廣泛傳播與商業化;並促進將聯邦資助創新進行國內製造。 建議5: 積極與創新者、企業家與資助者合作,確保其擁有足夠之智慧財產權與網路安全教育與資源來保護其之想法與業務,並接受培訓以能夠識別與防止外國公司或國家潛在之智慧財產權盜竊。 (2)關鍵領域2:獲取資本(Accessing Capital) 美國前七大上市公司全部皆由創投所支持,於1990至2020年間,相較於私部門之雇用率上升40%,同一時期由創投支持之公司雇用率成長達960%;美國創投規模亦居於全球之冠,甚至某些城市之創投規模已超過其他國家,如2021年紐約之創投規模即相當於印度全國之規模。惟美國創投之問題在於投資機會未能平等,如女性、有色人種、非都會區較難獲得創投投資。 建議6: 透過制定新聯邦計畫,擴大企業家之成長資金管道,以支持各地更多企業家,特別是通常未受足夠服務之企業家。 建議7: 透過擴大直接資助與基於激勵(incentive-based)之聯邦計畫,增加資金並為新興基金經理提供機會,以便於全國更多處皆能有更多具有各種人口背景與專業之投資人。 建議8: 向投資於研發、種子輪或A 輪融資新創公司、女性與少數族群擁有之新創公司、以及保護與授權智慧財產權之公司與個人提供年度稅收抵免與激勵措施。 (3)關鍵領域3:培養創業人才(Developing Entrepreneurial Talent) 人才對於創業生態系之完整建構至為重要,美國一半以上之10億美元公司由移民創辦,三分之二之獨角獸公司由移民創辦或共同創辦,這些公司之創辦人中有25%是國際學生。 建議9: 透過提供導師、支持服務資金以及幫助吸引與培養關鍵人才,全面支持新高潛力企業家,旨在增加美國新創公司之數量與影響力。 建議10: 有系統地提供支持創業之工具與資源,打破任何人、任何地方之障礙,為新創業企業做出貢獻,以便美國未來能更快地創新。
WHO公布實施遠距醫療綜合指引COVID-19大流行對公共衛生保健服務施加了巨大壓力,同時限制了實體醫療服務的近用,引起人們對實施或擴大實施遠距醫療(Telemedicine)的極大興趣。為了對應全球對遠距醫療服務的增長,世界衛生組織(World Health Organization , WHO)於今(2022)年11月9日發布《實施遠距醫療綜合指引》(Consolidated Telemedicine Implementation Guide),以幫助政策制定者、決策者與實行者設計與監管遠距醫療之實施。 遠距醫療,涉及使用數位科技來克服公衛服務的距離障礙,具有改善臨床管理和擴大醫療服務覆蓋範圍之潛力。遠距醫療已證明的好處包含減少不必要的臨床就診、提供更及時的醫護和擴大醫療服務的覆蓋率。 這份指引建議政策決策者以及設計和監管遠距醫療之實施人員,實施遠距醫療應分為三個階段,其詳細步驟重點如下: 階段一:評估情況 1.組建團隊,並確立目標:確定應參與遠距醫療設計、管理和實施的利害關係人。 2.定義衛生計畫的背景與目標:確定遠距醫療的服務計畫與其地理範圍。 3.對作業環境進行分析:對應用軟體(Software Applications)與通信平台的訊息傳遞通道(Channel)進行作業環境分析、評估應用軟體是否可符合硬體之需求。 4.評估有利環境:包含評估數位成熟度以確定基礎設施與組織需求、審查公衛工作者的能力、評估監管與政策之顧慮、考慮資訊跨域流動之影響、探討財政機制。 階段二:實施之規劃 1.確定遠距醫療系統將如何運作:定義功能性和非功能性需求、因應需求更新之工作流程、進行廣泛的用戶測試、變更管理計畫。 2.實施病人與衛生系統工作者之安全與保護機制:包含建立個資隱私、近用和保護病人個資的系統、實施公衛人員身分驗證之方式、決定並揭露是否會進行錄音錄影等事項。 3.建立標準操作程序(Standard Operating Procedures, SOP):確定遠距醫療適用的案例與潛在責任、決定培訓方式與支持管道、建立確定身分之流程、建立明確的同意文件、討論是否需改變公衛人員的薪酬、建立聯網醫療器材(Connected Medical Devices)的管理計畫。 4.強化客戶/病人參與以及性別、公平與利害關係人權利:決定遠距醫療之推廣機制(Mechanisms for Outreach)、評估遠距醫療之公平性、對利害關係人權利的影響與確保殘疾人士的可近用性。 5.制定預算:確定總成本預算、計畫如何將遠距醫療服務整合到常態醫療服務和採購安排之中。 階段三:監測和評估(Monitoring and Evaluation, M&E)與持續改善 1.確定監測和評估目標:定義績效評估和影響指標。 2.計畫持續改善和適應性管理:加入日常監管和持續改善機制、降低潛在風險。 WHO最後提醒遠距醫療是對於醫療服務的補充而非取代,並提供一個確保病人安全、隱私、追溯性、問責制的可監督環境。 「本文同步刊載於 stli生醫未來式 網站(https://www.biotechlaw.org.tw)」
德國機器人和人工智慧研究人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。 德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。 解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。