巴西政府公布個人數據保護法草案

  巴西政府於2015年1月28日公布個人資料保護法草案(Regulation Of The Brazilian Internet Act And Bill Of Law On Personal Data Protection),該草案適用於個人和通過自動化方式處理個人資料的公司,惟前提是(1)處理行為發生在巴西或(2)蒐集個人資料行為發生在巴西。該草案將強加規範企業處理其在巴西的個人資料,包括資料保護義務和要求:

一、企業必須使資料當事人能夠自由的、直接的,具體的使當事人知悉並取得人同意以處理個人資料。

二、除了在有限的例外情況下,禁止處理敏感個人資料。例如資料當事人已被告知處理敏感個人資料的相關風險,並有具體的同意。敏感的個人資料包括,種族和民族淵源,宗教,哲學或道德信仰,政治觀點,健康和性取向資料,以及遺傳數據。

三、資料外洩時有義務立即報告主管機關。

四、當個人資料是不完整,不準確或已經過期時,允許資料當事人查詢他們的個人資料並更正之。

五、不得提供個人資料給資料保護水平不相似的國家。

六、有義務依比例原則採取安全保障措施以處理個人數據,防止未經授權的訪問,破壞,丟失,篡改,通訊或傳播資料。

相關連結
※ 巴西政府公布個人數據保護法草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6784&no=67&tp=1 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
Golan v. Holder: 美國高等法院確認公共領域之外國著作可取得著作權保護

  美國高等法院於2012年1月18日對Golan v. Holder案做出裁定,確認維持將目前在公共領域的外國著作納入著作權保護的聯邦法。Golan v. Holder案之主要爭點為,美國國會於1994年為符合伯恩公約及WTO「與貿易有關智慧財產權協定(TRIPS)」的規定,決議通過讓之前無法在美國取得著作權保護的外國著作可以回溯取得美國著作權,一夕之間近上百萬件於1923年至1989年之間在國外發表的著作在美國不再屬於公共領域,包括了許多經典的電影,名畫及交響樂等,這個法案引起了許多樂團指揮家、表演者、老師、電影檔案保管者及電影發行商等人士的不滿,因為他們將無法像之前一樣無限制的使用這些著作。   美國聯邦地區法院於2009年曾判定認為恢復屬於公共領域的外國著作的著作權違反了保障言論自由的美國憲法增修條文第一條,但高等法院以6:2的多數意見認為,恢復公共領域的外國著作的著作權保護並不違反憲法修文第一條及憲法下的著作權條款。身為著作權擁有者,這個裁定對電影與音樂業者可以說是場勝戰,但對Google建立電子圖書館的計畫則將是個挑戰,Google表示這將使他們無法把近一千五百萬冊書籍的內容公開在網路上提供,並且也會影響到他們已完成電子化的上百萬冊書籍的使用。

CAFC判決未遵守自由授權條款構成著作權侵害

  美國聯邦巡迴上訴法院(CAFC)於2008年8月13日,在Jacobsen v. Katzer一案中,對於未遵守自由軟體授權條款而使用他人著作,作成構成著作權侵害之判決,扭轉地方法院之判決結果。由上訴人Jacobsen經營的JMRI(Java Model Railroad Interface),透過多數參與者集體協作的程式DecoderPro,為開放資源的自由軟體,採取Artistic License模式,供模型火車迷編輯解碼器晶片(decoder chip)的程式以操控模型火車;被告Katzer從 DecoderPro下載了數個定義檔來製作一套市售軟體稱Decoder Commander,卻未遵守該自由授權條款,包括未標示JMRI為原始版本之著作權人、可從何處取得標準版本、及修改後版本與原始版本差異部份之註記等。     Jacobsen認為Katzer的侵害著作行為已造成不可回復之損害,請求法院暫發禁止命令(preliminary injunction)以停止Katzer的違法行為,地方法院認為被告乃違反非專屬授權契約,應依違反契約責任負責,不另構成著作侵權行為,駁回暫發禁止命令的請求。     聯邦巡迴上訴法院認為本案爭點在於「自由軟體授權條款的性質究屬契約內容(covenant)或授權條件(conditions of the copyright license)?」,由於Artistic License之用語為「在符合下列條款之條件下」(provided that the conditions are met )方能重製、修改及散布,以遵守授權條款為取得授權之條件,本案中Katzer未能遵守條款,因而根本未取得授權,其行為屬無權使用而構成侵害著作權,是以命地方法院就暫發禁止命令一事重新審理。在善意換取善意(Creative Common,創用CC)及分享著作的潮流下,支持者譽此結果為自由軟體的一大勝仗。

美國奈米容器 挑戰舊有法規

  隨著奈米科技之迅速發展,相關議題焦點已擴及美國食品包裝業,並有待進一步明確規範,以保障消費者安全。由新興奈米材料計畫(Project on Emerging Nanotechnologies,PEN)以及食品雜貨製造協會(Grocery Manufacturers Association,GMA)於2008年6月提出「確保奈米材料使用於食品包裝之安全性(Assuring the Safety of Nanomaterials in Food Packaging: The Regulatory Process and Key Issues )」研究報告,結合產、官、學與公益團體之意見,分別就食品生產過程中,研究「應於何時評估奈米材料之毒性」以及「奈米包裝材質對於食物的潛在危機」。   該報告內容指出,以往係由美國食品暨藥物管理局(FDA)與環保署(EPA)負責管制一般食品包裝材質;FDA以「聯邦食品、藥物及化妝品法」(Federal Food, Drug and Cosmetic Act,FEDCA)中的食品添加物(food additive)條款為規範主軸,而EPA則以「聯邦除蟲劑、殺菌劑及滅鼠法」(Federal Insecticide, Fungicide, and Rodenticide Act,FIFRA)作為管理食品包裝材料之依據;近年來業界認為奈米材料有助於保存食品,漸而應用於食品包裝技術上,惟現行關於奈米微粒之資訊仍未完全,且舊有法規已不敷使用,因此必須蒐集大量數據資料並訂立明確規範,盡可能減低包裝容器所產生的潛在危機,以確保消費者與食品成分皆安全無虞。   該項研究採公開對話方式,區分為法制、科技與產業等三個小組,各有其研究目標: (1)法制面:確立奈米尺寸之定義、檢驗奈米尺寸物質是否能列入食品添加物之範疇。 (2)科技面:分析奈米微粒之物理與化學性質、評估使用奈米材料對於環境的衝擊。 (3)產業面:嘗試建立奈米包裝材質之生命週期。   即便該報告尚未能指引出明確的解決之道,其仍出於增進對話之目的,以表格整理現有資料並提問,藉以促使產業與政府機關進一步思考問題之方向,並尋求科學性的解決方式。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP