美國為加強聯邦補助生物科研之安全性而提出新規範

刊登期別
第27卷第2期,2015年02月
 
隸屬計畫成果
經濟部技術處產業科技創新之法制建構計畫成果
 

※ 美國為加強聯邦補助生物科研之安全性而提出新規範, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6807&no=645&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
美國商務部國家技術與標準局公布技術創新計畫(TIP)之執行規則草案,徵求外界意見

  過去十餘年來,美國商務部國家技術與標準局(The Commerce Department’s National Institute of Standards and Technology, NIST)推動的「先進技術計畫」(Advanced Technology Program, ATP),成功帶領美國中小企業透過技術的研發投入,創造美國經濟榮景。近年來面對變動劇烈的國際環境,為提升美國競爭力,美國總統於2007年8月9日簽署通過「意涵深遠地促進傑出技術、教育與科學之美國機會創造法」(The America Creating Opportunities To Meaningfully Promote Excellence In Technology, Education, And Science Act, 簡稱The America COMPETES Act)。   The America COMPETES Act特別授權NIST負責推動並執行一項新的研究補助計畫-技術創新計畫(Technology Innovation Program, TIP),企圖藉由在國家重點需求領域(critical national need areas),補助具有高風險性及高報酬的技術研究(high-risk, high-reward research),支持、促進並加速美國的創新。所謂「高風險、高報酬」之技術研究,指具有以下三項特質的技術研究:(1)研究可轉化成具體實益的潛在可行性,其成果將產生深遠及廣泛的影響;(2)研究計畫的進行係為了回應屬NIST技術職掌範圍內的重大國家需求;(3)研究的技術議題過於創新(too novel)或跨越甚多學科(spans too diverse a range of disciplines),以致傳統的專家審查程序無法適當地用來篩選此類計畫。至於「國家重點需求領域」,指問題觸及的面向極大,然須要被克服的社會挑戰(societal challenge)尚無因應之道而有賴國家予以關注,此等問題與社會挑戰可能可以透過高風險、高報酬研究之進行而予以解決者。   根據The America COMPETES Act,TIP將依研究實力競爭(on the basis of merit competitions)的原則,透過分攤成本的研究補助(cost-shared research grants)、合作協議(cooperative agreements)或契約(contracts)等方式,鼓勵業界單獨或共同(透過合資方式)提出技術創新的研究計畫申請以合資方式提出者,其主導者(lead entity)可為中小型企業或高等教育機構。TIP的補助對象限於設立於美國並在美國境內經營其主事務的中小型企業,外國企業參與TIP若符合美國經濟利益者,亦得獲得補助。TIP的補助金額不超過個別研究計畫總成本的半數,且只能用於補助直接成本,間接成本、收益或管理費則不在補助之列。總計對單一單位的補助以最長三年且不超過三百萬美元為限;對於合作研究則以最長五年且不過過九百萬美元為限。由於The America COMPETES Act僅就TIP的補助目的、補助對象、補助條件等作原則性規定,其運作細節仍有待NIST進一步設計,日前NIS已於2008年3月7日對外公布TIP執行規則草案,徵求各界意見。   隨著TIP的規劃與實際運作,過去由NIST所執行的ATP也將完成其歷史性任務,由TIP取代並宣告美國政府支持產業技術研發的新理念-亦即透過支持高風險、高報酬之技術研究,以回應美國的國家重點需求領域。   身為全球創新的龍頭,美國所提出的科技研發創新政策向為各國學習與參考借鏡的標竿,隨著The America COMPETES Act的通過,新法中關於美國產業創新的新機制規劃,已引起其他國家高度關注。印度科技與地球科學(Science & Technology and Earth Sciences)部長在The America COMPETES Act通過的一個月後即宣佈,印度政府將於短期內提出全面性的印度創新法案(Indian Innovation Act),藉以激勵印度的創新,而此項創新法案將會以美國的America COMPETES Act為參考模型。

法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)

法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。

英國政府公布物聯網設備安全設計報告及製造商應遵循之設計準則草案

  英國數位文化媒體與體育部於2018年3月8日公布「安全設計:促進IoT用戶網路安全(Secure by Design: Improving the cyber security of consumer Internet of Things)」報告,目的在於讓物聯網設備製造商於製程中即採取具有安全性之設計,以確保用戶之資訊安全。此報告經英國國家網路安全中心(National Cyber Security Centre, NCSC)、製造商及零售商共同討論,並提出了一份可供製造商遵循之行為準則(Code of Practice)草案。   此行為準則中指出,除設備製造商之外,其他包含IoT服務提供者、行動電話軟體開發者與零售商等也是重要的利益相關人。   其中提出了13項行為準則: 不應設定預設密碼(default password); 應實施漏洞揭露政策; 應持續更新軟體; 應確保機密與具有安全敏感性的資訊受到保護; 應確保通訊之安全; 應最小化設備可能受到網路攻擊的區域; 應確保軟體的可信性; 應確保設備上之個資受到妥善保障; 應確保系統對於停電事故具有可回復性; 應監督設備自動傳輸之數據; 應使用戶可以簡易的方式刪除個人資訊; 應使設備可被容易的安裝與維護; 應驗證輸入設備之數據。   此草案將接受公眾意見至2018年4月25日,並規劃於2018年期間進一步檢視是否應立相關法律與規範,以促進英國成為領導國際之數位國家,並減輕消費者之負擔並保障其隱私與安全權益。

歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

TOP