數百萬計個人資料遭竊取 引起美國重視資料保護

  美國接連發生電腦仲介商 ChoicePoint NexisLexis 分別於 2004 10 月及 2004 4 月電腦遭入侵,數以百萬計的個人資料被竊取之事件,使得個人資料外洩的問題,受到美國國會的強烈關注。此一事件的發生,同時讓大家注意到加州資料庫外洩通知法( SB1386 )對於消費者保護的重要性。 SB13866 法要求持有個人敏感資料的組織、企業,當資料外洩時,需立即通知當事人。 Choice point 此次即是迫於加州州法的規定,於 2005 2 月通知了 3 5 千名加州州民關於其個人資料遭受竊取的的消息。


  鑑於個人資料保護的重要性,美國國會議員 Charles Schumer ( 紐約州 ) and Bill Nelson ( 佛羅里達州 ) 仿照 SB1386 加州立法,於 2005 4 12 日舉辦了「 2005 年個人資料保護風險通知義務法案」( Notification of Risk to Personal Data Act of 2005 )的公聽會。草案建議成立聯邦性法律,要求企業或政府,一旦其持有之個人資料遭到竊取,即需通知當事人。本草案同時明訂企業或政府應通知的事項;並擬允許,讓資料遭竊的個人,可於其信用報告中顯示其 7 年內可能遭受詐欺警告的紀錄。


  本法案中除了包含 SB1386 的規定外,也對販賣個人敏感資料進行規範,並要求聯邦貿易委員會( Federal Trade Commission )設立相關組織,以協助資料遭竊之被害者。

 

相關連結
※ 數百萬計個人資料遭竊取 引起美國重視資料保護, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=681&no=67&tp=1 (最後瀏覽日:2025/11/20)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

歐洲資料保護監管機關研議提出「智慧電表系統發展準備建議」研究報告

  歐洲資料保護監管機關(European Data Protection Supervisor,以下簡稱EDPS)是一個獨立的監督機關,其任務主要在於監督歐盟個人資料的管理程序、提供影響隱私的政策及法制建議、與其他類似機關合作以確保資料的保護。   EDPS於今(2012)年6月8日,針對歐盟執委會於今(2012)年3月9日發布的「智慧電表系統發展準備建議」(Recommendation on preparations for the roll-out of smart metering systems,以下簡稱準備建議)提出相關意見。「智慧電表系統發展準備建議」乃係針對智慧電表部署之資料安全保護及經濟成本效益評估,提出發展準備建議,供會員國於進行相關建置及制定規範時之參考。然EDPS指出,執委會對於智慧電表中個人資料保護的重視雖值得肯定,但並未在準備建議中提供更具體、全面且實用的指導原則。智慧電表系統雖能帶來顯著的利益,但造成個人資料的大量蒐集,可能導致隱私的外洩,或相關數據遭使用於其他目的。   有鑑於相關風險,EDPS認為在準備建議中,應更加強其資料保護的安全措施,至少應包含對資料控制者在處理個人資料保護評估時有強制的要求;此外,是否有必要進行歐盟層級的立法行動亦應予以評估。EDPS提出的意見主要包括:(1)應提出更多有關選擇資料當事人及處理相關資料的法律依據,例如電表讀取的頻率、是否需取得資料當事人同意;(2)應強制「提升隱私保護技術」(privacy-enhancing technologies)的適用,以限縮資料的使用;(3)從資料保護的角度來釐清參與者的責任;(4)關於保存期間的相關原則,例如對於家戶詳細消費資訊的儲存期間、或在針對帳單處理的情形;(5)消費者能直接近取其能源使用數據,提供有效的方式使資料當事人知悉其資料的處理及揭露,提供有關遠端遙控開關之功能等訊息。

日本經產省與國交省提出「自動駕駛推動發展與制度規劃」檢討報告

  日本經濟產業省於2016年11月14日召開第二次「自動駕駛商業檢討會」,邀請產官學研各界對於自動駕駛未來國際標準的動向以及諸如協調領域、社會接受度、制度和基礎建設等方面所涉議題,交換意見。   該檢討會首先注意到美國、歐洲以及韓國對於自動駕駛各式規則或指引制定的討論。在協調領域方面,檢討會指出:關於自動駕駛所需的地圖資訊,應由各汽車製造商協調,透過合作機制或規範來確保資訊與資金提供的公平性。   社會接受度方面,檢討會則提出建議考量是否需要針對不擅駕駛的高齡者或初學者,提供有效系統的必要性。在制度與基礎建設方面,檢討會則指出:以現狀而言,自動駕駛服務的商業永續性仍不明朗,必須持續進行實證試驗。   此外,為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於同年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於12月9日召開第一次會議。   該次會議討論的範圍包括:為實現無人駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。   會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「非平地道路間以車站為據點的自動駕駛服務」等議題速成立工作小組。

英國因應自動駕駛車輛上路,提出新保險責任制度

  英國政府為達成於2021年使完全無須人為操控的自動駕駛車輛可在英國公路上行駛之目標,提出新保險責任制度。透過自動駕駛和電動車輛法案的提出,將為自動駕駛車輛可合法上路行駛鋪路,從而帶動自動駕駛車輛產業發展。整體而言,一旦此立法正式通過,除了代表英國政府正式樹立自動駕駛車輛的保險框架里程碑外,也象徵英國朝向2021年的目標又更邁進一步。

TOP