澳洲財政部發佈群眾募資法制框架選項之諮詢文件

  2014年12月澳洲財政部就股權式群眾募資(Crowd-Sourced Equity Funding, CSEF)對外發佈政策框架選項的諮詢文件,為使新創企業容易對廣大的中小投資者籌集資金,該稿件承認政府需要採取行動,以克服現有的監管障礙,以利在澳洲廣泛的使用群眾募資這項工具。

提出討論文件的三個政策選項包括:
一、 公司和市場諮詢委員會(CAMAC)在2014年6月提出的法制框架。
二、 在2014年4月份於紐西蘭生效施行的紐西蘭模式(New Zealand model)的法制框架。
三、 維持現狀。

  上述方案各具特色及優缺點,在公司和市場諮詢委員會(CAMAC)的提案中,建議專注於修改聯邦公司法,創造一類特殊的豁免上市公司(不需召開年度股東大會、提供經審計之財務報告等),且限制符合條件之小型企業才能納入,此外,設定200萬美元的募資上限,並可在12個月內在此範圍內提高募資;在中介機構部分,需持有澳大利亞金融服務執照(AFSL),對於盡職調查(Due diligence)所承擔的責任要求較低,須提供風險警告予參與群眾募資的投資者,且禁止提供其投資諮詢和貸款;對於投資者之規定,則設有個案均僅能投資2,500澳幣的上限以及12個月內投資股權式群眾募資,總金額不得超過10,000澳幣的限制。

  若選擇第二方案,即使用已於2014年4月生效的紐西蘭法制框架,與第一方案相較具有諸多相似之處。然而,兩制間也存有顯著的差異,包括紐西蘭模式並未特別創設一類豁免上市公司、也未將進行股權式群眾募資的公司限制於小企業;對中介機構平台的收費標準不設限制,資訊揭露要求亦較低;而對參加投資者的投資金額限制原則上是近乎相同的。

  如果選擇第三個維持現狀方案,在現行法制下意味著群眾募資起始時將面臨50名非員工股東的上限、股份公開報價禁令的限制,設立後須負擔如定期發佈經查核之財報等較一般私有企業更繁重的公司治理要求,此外,中介機構如群眾募資平台等也必須擁有澳大利亞金融服務執照(AFSL)。

  諮詢文件訂立2014年12月8日至2015年2月6日這段期間內,向大眾公開徵求建議,並要求各利害關係人如中介機構,包括創投基金與群眾募資平台之意見。以推動群眾募資法制化,並尋求進一步的磋商出可能的立法草案,在確保減少監管障礙與保持充足投資者保護之間取得適當的平衡。可預期的未來這一年群眾募資的法制架構將在澳洲逐漸明朗化。

相關連結
※ 澳洲財政部發佈群眾募資法制框架選項之諮詢文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6815&no=67&tp=1 (最後瀏覽日:2026/02/11)
引註此篇文章
你可能還會想看
WhatsApp因違反GDPR遭愛爾蘭資料保護委員會開罰2.25億歐元

  愛爾蘭資料保護委員會(Data Protection Commission,DPC)於今(2021)年9月宣告WhatsApp Ireland Limited(下稱WhatsApp)違反歐盟一般資料保護規則(General Data Protection Regulation,GDPR)並處以高額裁罰。   DPC自2018年12月起主動調查WhatsApp是否違反GDPR下的透明化義務,包括WhatsApp透過其軟體蒐集用戶與非用戶的個人資料時,是否有依GDPR第12條至第14條提供包括個資處理目的、法律依據等相關資訊,以及該資訊有無符合透明化原則等,其中又以WhatsApp是否提供「如何與其他關係企業(如Facebook)分享個資」之相關資訊為調查重點。   歷經長時間的調查,DPC作為本案領導監管機關(lead supervisory authority),於2020年12月依GDPR第60條提交裁決草案予其他相關監管機關(supervisory authorities concerned)審議。惟DPC與其他相關監管機關就該裁決草案無法達成共識,DPC復於今年6月依GDPR第65條啟動爭議解決程序,而歐洲資料委員會(European Data Protection Board)在同年7月對裁決草案中的疑義做出有拘束力之結論,要求DPC提高草案中擬定的罰鍰金額。   DPC最終在今年9月2日公布正式裁決,認定WhatsApp未依第12條至第14條提供資訊予「非軟體用戶」之資料主體,而「軟體用戶」的部分也僅有41%符合規範,嚴重違反GDPR第5(1)(a)條透明化原則。據此,以母公司Facebook全集團營業額作為裁罰基準,DPC對WhatsApp處2.25億歐元之罰鍰,為GDPR生效以來第二高的裁罰,並限期3個月改善。

中國大陸之工業和信息化部發布《算力標準體系建設指南》之徵求意見稿,欲加強算力低碳標準發展

2025年10月21日,中國工業和信息化部發布《算力標準體系建設指南》(徵求意見稿),公開徵求意見。提出九大部分,包含基礎通用、算力設施、算力設備、算網融合、算力互聯、算力平台、算力應用、算力安全以及綠色低碳標準。其中,「綠色低碳」標準旨在引導算力產品、平台及應用在全生命週期內實現環境友好、資源節約與能源高效利用,包含: 1. 綠色低碳產品標準:規範算力產品從設計、生產、使用到廢棄處理全過程的環境影響。包括節能設備技術要求、有害物質管控、材料回收與循環利用,以及生命週期評估(LCA)等標準。 2. 綠色低碳平台標準:建立可以整合統計與分析電、水、碳、熱、冷等資訊的綜合性管理平台。標準涵蓋了平台的架構設計、數據對接與管理功能,以實現能源使用的精細化監測。 3. 綠色低碳應用標準:針對算力服務過程中的環保表現進行評價,包含碳足跡核算、環境適應性、綠色供應鏈管理以及綠色算力的計算方法。 4. 能效監測技術標準:定義算力中心的各項能效核心指標,如電效、水效、碳效及空間效率。此外,也規範了監測頻率、先進節能技術的使用規範以及可再生能源的使用佔比。 5. 算力電力協同標準:規範算力資源與電力資源的協同調度,重點包含「源網荷儲」一體化、算電協同管理及相關關鍵設備的技術要求,以提升整體能源利用效率。 根據徵求意見稿,到2027年,中國將在算力通用基礎、基礎設施、設備、網路融合、平台、應用、安全以及綠色低碳等領域,制定或修改50項以上標準。

Google公司為強化專利組合,再下一步棋

  谷歌公司(下簡稱Google)已經證實收購來自IBM公司共217篇專利;其中188篇專利為IBM已取得之專利,29篇專利為IBM公司申請中的專利。但Google拒絕透露收購金額。   這些專利涵蓋了許多不同的技術,主要的專利是與資料處理有關,例如電子郵件處理、線上日曆,以及在不同裝置間轉換web apps等功能。其中一篇專利預期用以提升Google的社群網路(Google+)之搜尋功能。   其實從去年開始,Google已經收購了來自IBM公司總共約2000篇的專利,這些專利內容與手機軟體、電腦的硬體設備,以及處理器有關。此外,Google去年也以鉅額收購Motorola公司,背後一個很大的原因可能是跟Motorola所擁有的2萬多篇專利有關。   目前許多科技龍頭公司,已有例行性地藉由採取專利訴訟以取得市場地位的趨勢。例如Apple已指控包括HTC等智慧型手機供應商,因使用Google所擁有的Android手機操作系統,而涉嫌侵害Apple的諸篇專利;在與Apple的爭訟過程中,HTC獲得來自Google收購Motorola後所獲得之專利。   Google的執行長佩吉(Larry Page)在宣布收購Motorola時曾經表示,藉由收購Motorola可強化Google的專利組合(patent portfolio),協助Google公司對抗來自Apple或其他公司的競爭威脅。   Google公司透過持續不斷地強化專利組合,拓展專利領域,企圖在這些因專利涉訟的智慧型手機市場中,穩固其市場霸主地位。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP