2014年12月澳洲財政部就股權式群眾募資(Crowd-Sourced Equity Funding, CSEF)對外發佈政策框架選項的諮詢文件,為使新創企業容易對廣大的中小投資者籌集資金,該稿件承認政府需要採取行動,以克服現有的監管障礙,以利在澳洲廣泛的使用群眾募資這項工具。
提出討論文件的三個政策選項包括:
一、 公司和市場諮詢委員會(CAMAC)在2014年6月提出的法制框架。
二、 在2014年4月份於紐西蘭生效施行的紐西蘭模式(New Zealand model)的法制框架。
三、 維持現狀。
上述方案各具特色及優缺點,在公司和市場諮詢委員會(CAMAC)的提案中,建議專注於修改聯邦公司法,創造一類特殊的豁免上市公司(不需召開年度股東大會、提供經審計之財務報告等),且限制符合條件之小型企業才能納入,此外,設定200萬美元的募資上限,並可在12個月內在此範圍內提高募資;在中介機構部分,需持有澳大利亞金融服務執照(AFSL),對於盡職調查(Due diligence)所承擔的責任要求較低,須提供風險警告予參與群眾募資的投資者,且禁止提供其投資諮詢和貸款;對於投資者之規定,則設有個案均僅能投資2,500澳幣的上限以及12個月內投資股權式群眾募資,總金額不得超過10,000澳幣的限制。
若選擇第二方案,即使用已於2014年4月生效的紐西蘭法制框架,與第一方案相較具有諸多相似之處。然而,兩制間也存有顯著的差異,包括紐西蘭模式並未特別創設一類豁免上市公司、也未將進行股權式群眾募資的公司限制於小企業;對中介機構平台的收費標準不設限制,資訊揭露要求亦較低;而對參加投資者的投資金額限制原則上是近乎相同的。
如果選擇第三個維持現狀方案,在現行法制下意味著群眾募資起始時將面臨50名非員工股東的上限、股份公開報價禁令的限制,設立後須負擔如定期發佈經查核之財報等較一般私有企業更繁重的公司治理要求,此外,中介機構如群眾募資平台等也必須擁有澳大利亞金融服務執照(AFSL)。
諮詢文件訂立2014年12月8日至2015年2月6日這段期間內,向大眾公開徵求建議,並要求各利害關係人如中介機構,包括創投基金與群眾募資平台之意見。以推動群眾募資法制化,並尋求進一步的磋商出可能的立法草案,在確保減少監管障礙與保持充足投資者保護之間取得適當的平衡。可預期的未來這一年群眾募資的法制架構將在澳洲逐漸明朗化。
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
歐盟NIS 2指令生效,為歐盟建構更安全與穩固的數位環境歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union, NIS 2 Directive)於2023年1月16日正式生效,其於《網路與資訊系統安全指令》(Directive on Security of Network and Information Systems, NIS Directive)之基礎上,對監管範圍、成員國協調合作,以及資安風險管理措施面向進行補充。 (1)監管範圍: NIS 2納入公共電子通訊網路或服務供應、特定關鍵產品(如藥品與醫療器材)製造、社交網路平台與資料中心相關數位服務、太空及公共行政等類型,並以企業規模進行區分,所有中大型企業皆須遵守NIS 2之規定,而個別具高度安全風險之小型企業是否需要遵守,則可由成員國自行規範。 (2)成員國協調合作: NIS 2簡化資安事件報告流程,對報告程序、內容與期程進行更精確的規定,以提升成員國間資訊共享的有效性;建立歐洲網路危機聯絡組織網路(European cyber crisis liaison organisation network, EU-CyCLONe),以支持對大規模資安事件與危機的協調管理;為弱點建立資料庫及揭露之基本框架;並引入更嚴格的監督措施與執法要求,以使成員國間之裁罰制度能具有一致性。 (3)資安風險管理措施: NIS 2具有更為詳盡且具體之資安風險管理措施,包含資安事件回報與危機管理、弱點處理與揭露、評估措施有效性的政策與程序、密碼的有效使用等,並要求各公司解決供應鏈中的資安風險。
日本公布《行動通信領域的基礎設施共享,於電信事業法及電波法的適用關係指引》隨著具有高速大容量特性的第五代行動通訊(5G)技術啟用,如何促使發射射頻(Radio frequency, RF)的基地臺能夠達到小型化及多點化的目標,將是未來重要的課題。但在地理空間限制、景觀影響與法規限制等因素下,除了增設基地臺外,也可考慮「基礎設施共享」(Infrastructure Sharing)的概念。 日本總務省於2018年12月28日公布《行動通訊領域的基礎設施共享-電信事業法及電波法的適用關係指引》(移動通信分野におけるインフラシェアリングに係る電気通信事業法及び電波法の適用関係に関するガイドライン)。 本指引主要從「利用基礎設施共享,推動行動通訊網絡整備」的觀點出發,首先定義「基礎設施共享事業」之範圍與型態,其將基礎設施分為兩類,一類為土地和建物、鐵塔等工作物、另一類為電信設備(如天線、增幅器、調變器)。接著說明基礎設施分享業者在使用上述兩類基礎設施時,於電信事業法及電波法之適用。具體內容包含欲經營該事業之必要程序、業者向行動通訊業者提供基礎設施時簽訂的契約類型、提供基礎設施的條件,最後說明若行動通訊業者、電信業者等各業者間,無法就欲共享的基礎設施使用權達成共識時,相關的爭議處理流程。本指引最後亦說明各業者在使用土地和建物、鐵塔等工作物,以及電信設備時的共通措施。
日本制定綠色轉型基本方針草案,規劃未來10年政策藍圖在美中對抗、烏俄戰爭等地緣政治背景下,世界各國開始重視供應鏈穩定問題。日本在過去幾次供應危機中,逐漸從以化石能源為中心之產業結構,轉向以綠能為主之產業結構,為讓自身能最大限度地利用脫碳相關技術,並在維持能源穩定供應的同時,強化日本產業競爭力,日本經濟產業省於2022年12月23日公布「實現綠色轉型基本方針(草案)」(GX実現に向けた基本方針),提出未來10年政策藍圖,目前正於全國各地辦理意見交流會,徵集民眾意見。 根據上述方針草案,日本未來將採取之措施包括:(1)透過《能源使用合理化法》(エネルギーの使用の合理化に関する法律)徹底推動節能、製造業結構轉型為碳循環型生產體制,並導入蓄電池和控制系統;(2)再生能源成為主力電源,2030年再生能源占比達到36-38%;(3)2030年核能占比達到20-22%;(4)導入氫能、尿素等新能源,於2025年大阪萬博將進行實驗,並參酌外國實際案例,以安全為前提,制定合理之氫能安全戰略及國際標準;(5)整備電力及瓦斯市場,以確保供應穩定;(6)強化資源外交及國際合作,避免因依賴外國資源而產生斷鏈危機;(7)推動蓄電池產業;(8)促進資源循環;(9)運輸部門綠色轉型,包括下一世代汽車、飛機、船舶、鐵路、人物流等;(10)以脫碳為目的之數位投資;(11)住宅、建築物節能;(12)基礎設施投資;(13)碳捕捉技術;(14)食材、農林水產業轉型等。 除上述措施外,日本亦將運用綠色經濟轉型債券(暫定)及各種金融手段,支援綠色轉型前期投資。相關法案預計於下次國會提出,並於兩年內檢討具體措施。