仿冒藥品在網路通路的銷售流通向來十分猖獗,根據國家藥事管理全會(National Association of Boards of Pharmacy, NABP)統計,全球約有97%的藥品銷售網站販賣仿冒藥品。職業醫療服務機構(Occupational Medical Services, OMS)也指出,2010年全球的偽劣藥品約有750億美元的市場規模,而消費者於網路上買到的藥品約有50%都是仿冒藥品。全球每年約奪走七十萬人命的肺結核和瘧疾,其中約二十萬人的死亡主因並非疾病,而是服用了仿冒藥品。
為了阻止仿冒藥品在網路銷售通路的氾濫,NABP申請並通過審核,成為新創立的.PHARMACY頂級域名(gTLD)的註冊資料庫管理者(Registry Operator),負責.PHARMACY頂級域名的網域名稱資料管理。.PHARMACY頂級域名提供藉由網路銷售處方藥、處方藥相關產品、藥事服務或資訊的公司提出申請。公司提出域名申請時,會由NABP負責審核,以確保使用.PHARMACY頂級域名販售藥品的網站,都符合相關管制標準及當地法規,包含網站所設立的地點及藥品銷售或運送地點等。為執行.PHARMACY頂級域名計畫,NABP下設不同功能的常設或非常設組織,例如在.PHARMACY開放申請的國家,如法國、日本及德國等,設立國家標準制定委員會(National Standard Setting Committees),於該國家的公司提出.PHARMACY頂級域名申請時,為NABP提供該國藥事相關法規的協助,以利NABP審核頂級網域名稱的申請案件。
.PHARMACY頂級網域名稱於2014年11月開放申請。未來,世界各地的消費者在網路購買藥品時,只要認明有後綴.PHARMACY的網址,就不用擔心會購買到偽劣藥品了。
鑑於頻寬市場以及電信市場的競爭愈趨炙熱,不肖資通訊業者對於弱勢消費者,透過詐騙或其他不適當銷售手法而獲利的案例也層出不窮。爰此,英國通訊管理局(Office of Communication/ Ofcom)在2007年2月8日,決定擴張防止固網電信業者對消費者「不正當銷售」(mis-selling)的規範內容(General Condition)。 「不正當銷售」指的是電信公司或其雇員,利用不受歡迎或者非法的銷售產品技巧所從事的相關市場活動。其中最嚴重的銷售方式,又以「砰一聲」(slamming)的銷售行為,最令人詬病。因為該銷售行為是在未經消費者明示同意、或者未使其獲得足夠知識與資訊下,逕自將提供的服務轉換到另一家公司。例如:轉換服務提供者,但並未通知你;通知轉換服務提供者,但未經你同意;所簽約的服務與提供的服務不盡相同;銷售人利用使你倍感壓力的方式來銷售服務等等,均屬誤賣行為。 此次的規則擴張,在規範對象上也會納入那些使用用戶迴路的服務提供者。Ofcom認為在日益激勵的市場競爭下,這些擴張規則有助於消費者權益,並能保護他們免受不適當的銷售活動干擾,更可確保消費者追求更好消費標的市場信心。
生物識別技術走進零售業近期幾家大信用卡公司遭駭客入侵,使得消費者受到了越來越大的身份被盜用的威脅。對此,能使購物更加安全的技術,特別是生物識別技術,包括電影中常見到的虹膜掃描,以及相對普及的指紋,聲音,臉部特徵識別等,越來越引發了人們的興趣。 目前,美國第二大零售連鎖店 Albertson 已經和其他數百個零售商一起加入了生物識別付款的試點行列。該公司發言人表示,新付款方式則大大加速了結帳的速度;另外也可以自動識別是否賣菸酒給未成年人。 不過生物識別技術的根本的缺陷在於隱私問題,因?這項技術意味著對個人資訊的集中儲存。而這個系統必然會成?駭客和其他居心不良者的「蜜罐」,一旦這個儲存系統被攻破,並將受害者的生物資訊惡意更改,受害者將面臨身份被終極盜用的噩夢。
歐盟執委會公布了行動醫療(mHealth)的公眾諮詢結果行動醫療(mHealth)是近期以來歐盟積極發展的目標之一,透過各類的行動裝置搭載應用程式,藉以觀測使用者的生理狀況,進而達到促進健康之目的,特別在綠皮書(Green Paper)提出之後,對於行動醫療的推廣策略,已出現了更為清楚的脈絡。 日前,歐盟執委會針對了行動醫療將可能帶來的各類問題,進行了一次公眾諮詢(public consultation),並在2015年1月公布了調查的結果。此次受訪的對象來自於政府機關、醫療機構、病人組織與網路業者,共計有211名受訪人。在各類的問題上,有97位受訪者認為,行動醫療服務必須具備完整的隱私保全機制,才能夠獲得用戶的信任,此外也有一半的受訪者認為政府應該加強此類資料管理的執法強度;亦有近半的受訪者表示,此類應用程式都應該通過「病人安全」(patient safety)的認證。 相對而言,網路業者則認為此類服務目前還難以進入市場,因為缺乏明確的管理框架。71名受訪者也表示,行動醫療服務的安全性、成效與相關法律責任,都還有待釐清。21名受訪者也認為,行動醫療的成效究竟如何,應該還需要更多的研究證明。 而歐盟委員會將在2015年與相關團體討論未來的政策走向,此法案也將是2015年5月議程中重要的一項議題。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。