德國總理梅克爾敦促歐盟立法允許「資訊追蹤(data tracking)」,以有效打擊恐怖主義

  2014年7月歐盟法院宣告2006年起施行的「資料保留指令」無效,該指令允許警察機關使用私人通聯記錄,但不允許揭示通訊內容。資料保留指令之所以被歐盟法院廢止,起因於不合乎比例原則及沒有充分的保護措施,該指令規定歐盟成員國必須強制規定電信公司必須保留客戶最近六個月到十二個月的通聯紀錄,不過在歐盟法院廢止指令之前,德國憲法法院在2010年時就已經以違反憲法為由停止執行指令。

  惟在2015年1月,伊斯蘭激進主義份子的恐怖攻擊事件,共12人被射殺。因此德國總理梅克爾2015年1月在下議院針對該恐怖事件發表演說,雖因美國的史諾登事件,揭露美國政府大量監聽私人通訊和監視網路流量的行動,而引起了德國人對隱私權保護的關注,但梅克爾表示德國各層級的部會首長都同意有使用私人通聯記錄的需要、使嫌疑犯的通聯記錄能夠被警方用來偵查犯罪,但應該由法律規範資料保留的期間限制,她敦促各界向歐盟委員會施加壓力,重新訂定資料保留指令,使各歐盟成員國能修正國內法律。

  歐盟委員會正在評估此法制議題,並考慮向歐盟議會、各成員國、民間團體、執法部門和個資保護組織間建立開放式對話,決定是否有需要訂定新指令;但德國司法部長並不贊成梅克爾擴大監督人民通訊的想法,認為這是過於倉促的行動,而且除了資訊記錄留存外,德國政府也儲存所有媒體資料並限制媒體自由,他認為這並不合適。

  目前英國國內保守黨和自由黨現正為新修訂的通訊資料法,為人民隱私權的保護範圍爭論不休,而美國由於近年受到不少駭客攻擊,故美國總統歐巴馬採取與梅克爾相似的立場,希望能擴張執法機關的權力,公開提倡強化美國網路安全相關法規。

相關連結
※ 德國總理梅克爾敦促歐盟立法允許「資訊追蹤(data tracking)」,以有效打擊恐怖主義, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6850&no=0&tp=1 (最後瀏覽日:2025/11/27)
引註此篇文章
你可能還會想看
日本修正《氫能基本戰略》以實現氫能社會

日本於2023年6月6日召開有關「再生能源、氫能等相關」內閣會議,時隔6年修正《氫能基本戰略》(水素基本戦略),其主要以「水電解裝置」、「燃料電池」等9種技術作為戰略領域,預計15年間透過官民投資15兆日元支援氫能相關企業,希冀盡速實現氫能社會。 日本早於2017年即提出氫能基本戰略,由於氫氣在使用過程中不會產生溫室氣體或其他污染物質,被認為是可以取代傳統化石燃料的潔淨能源,欲以官民共同合作,無論在日常生活、生產製造等活動下,都能透過氫能發電方式,達成氫能社會,故推出降低氫能成本、導入氫能用量的政策,並以2030年為目標,將氫能的用量設定為30萬噸、同時將氫能成本降為30日元/Nm3(以往價格為100日元/Nm3),使其成本與汽油和液化天然氣成本相當。為配合2021年《綠色成長戰略》,日本再次擴充目標,透過活用綠色創新基金,集中支援日本企業之水電解裝置和其他科技裝置,預計在2030年的氫能最大供給量達每年300萬噸、2050年可達2000萬噸。 然而隨著各國紛紛提出脫碳政策和投資計畫,再加上俄烏戰爭之影響,全球能源供需結構發生巨大變化,例如:德國成立氫氣專案(H2 Global Foundation)投入9億歐元,以市場拍賣及政府補貼成本的方式推動氫能、美國則以《降低通膨法》(The Inflation Reduction Act),針對氫能給予稅率上優惠措施等,在氫能領域進行大量投資,故為因應國際競爭,日本重新再審視國內氫能發展,並修正《氫能基本戰略》,除提出「氫能產業戰略」及「氫能安全保障戰略」外,本次主要修正之重要措施摘要如下: 1.維持2030年、2050年氫能最大供給量之設定,但新增2040年時提出氫能的最大供給量目標為1200萬噸。 2.由於水電解裝置在製造綠氫時不可缺,爰設定相關企業於2030年前導入15GW左右的水電解裝置,同時確立日本將以氫能製造為基礎之政策。 3.鑒於氫能科技尚不純熟、氫能價格前景不確定性高,在氫能供應鏈的建構上有較大風險,故透過保險制度分擔風險,以提高經營者、金融機構投資氫能之意願。 4.藉由氫能結合渦輪、運輸(汽車、船舶)、煉鐵化學等其他領域,期以氫氣發電渦輪、FC卡車(使用氫氣燃料電池Fuel Cell之卡車)、氫還原製鐵為中心,强化國際競爭力,創造氫能需求。 5.預計10年間,以產業規模需要在都市圈建設3處「大規模」氫能供給基礎設施;另依產業特性預計於具相當需求之地區,建設5處「中等規模」基礎設施。

美國競爭法主管機關發布反托拉斯執法與智慧財產權報告

  美國司法部(Department of Justice, DOJ)及聯邦貿易委員會(Federal Trade Commission, FTC)於今(2007)年4月中旬,公布了眾所矚目的「反托拉斯執法與智慧財產權報告」(Antitrust Enforcement and Intellectual Property Rights, Antitrust-IP Report)。本報告綜整歸納DOJ與FTC於2002年所舉行的一系列名為「知識經濟時代之競爭與智慧財產權法制政策」(Competition and Intellectual Property Law and Policy in the Knowledge-Based Economy)公聽會重點,以及來自於不同利益團體與產業代表之看法。   DOJ與FTC於1995年曾公布「智慧財產授權之反托拉斯指導原則」(Antitrust Guidelines for the Licensing of Intellectual Property,以下簡稱1995年指導原則),基本上,甫公布的「反托拉斯執法與智慧財產權報告」的內容,重申DOJ與FTC過去依1995年指導原則的執法實務與政策,報告也特別針對幾種經常引起疑義的智慧財產運用態樣,諸如搭售(tying):專屬交易(exclusive dealing)、特殊授權條款、專利聯盟(patent pools)、交互授權(cross-licenses),肯認其亦有加強競爭並有利於消費者的效果,故DOJ與FTC將會依合理原則(rule of reason)評估個別契約的合法性,而不會逕認其係本質違法(per se unlawful)。所謂合理原則,係指由法院及競爭法主管機關,就特定協議之有利於競爭效果與反競爭效果間進行權衡,以判斷其對整體市場競爭與消費者福祉所產生之影響。   此外,DOJ與FTC也針對個別的行為,如單方拒絕授權(unilateral Refusals to License)、標準制定(standard setting)、交互授權(cross-licenses)、專利聯盟(patent pools)、使專利期間延長於法定保護期間之外(extending patent rights beyond the statutory term)等,於報告中揭示其所持的一般管理政策。

日本貿易振興機構設立「東南亞智財網絡」以因應日本產品仿冒問題

  日本貿易振興機構(Jetro)於2月21日公開表示將在3月設立「東南亞智財網絡」以作為協助在東南亞活躍的日本企業智財活動的平台。該網絡之辦事處將設在Jetro的曼谷事務所內,以支援前進東南亞的日本企業智財活動。   在目標朝向2015年區域經濟整合的東南亞國家聯盟(ASEAN)中,對日本企業來說,期待能夠在智慧財產的領域中也制定ASEAN共通的規劃,提升專利與商標等智慧財產權利取得的速度,及強化仿冒與盜版的取締效果,而各國政府也正著手擬定「ASEAN智財行動計劃2011-2015」與改善智財相關的各個議題。雖然已經可以看見各國進行協調的動作,不過迄今為止還看不到域內共通的智財制度建置,其它像是迅速取得權利、有效取締仿冒等的問題對日本企業來講也還有很多需要改善的地方。   在前述背景下,Jetro表示,將以Jetro曼谷事務所作為辦事處,在3月啟動「東南亞智財網絡」。這個網絡將作為在東南亞各主要國家日本企業智財擔任人員所結集而成的IPG(Intellectual Property Group)辦事處,協助智財保護的各種活動、流通資訊、舉辦研討會與讀書會、向當地主管機關提出建言等等,將以促進ASEAN域內設立智財共通制度及建立各國協調的智財制度作為最終目標。   「東南亞智財網絡」主要預定的活動包括,(1) 東南亞各國域內日本政府、IPG與成員間在智財領域的相互合作及資訊共享;(2)透過各國IPG等團體向東南亞及ASEAN當局交換意見與提出建言;(3)與國際智慧財產保護論壇(IIPPF)的合作。在2012年則預定將舉行以下等活動,包括3月12日在新加坡召開的啟動會議與智財研討會、7月向ASEAN智財互助事務部(AWGIPC)提出建議書、參與日本人商工會議所連合會(FJCCIA)與ASEAN祕書長的對話等等。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP