2020年2月28日梵諦岡教宗與兩大科技巨頭IBM及微軟聯合簽署「羅馬呼籲AI倫理道德」文件,支持制定人工智慧(AI)發展倫理與道德規範,並特別呼籲應針對臉部辨識等侵入性技術進行監管。在聯合文件上特別提及臉部識別技術潛在之濫用風險,例如警察會使用臉部辨識系統調查犯罪行為、《財富》500強公司使用AI審查求職者,這兩個例子均具有潛在且高度之風險,使用不正確或是具有偏見之AI判斷均可能會造成傷害。誠如方濟各在致辭中說:「人工智慧記錄個人資料,並使用於商業或政治目的,而且通常是在個人不知情之情況下,這種不對稱,將使少數人了解我們的一切,但我們卻對他們一無所知,這將使批判性思維和對自由的自覺變得遲鈍,不平等現象急遽擴大,知識和財富在少數人手中累積,將對民主社會構成重大風險。」 此次會議希望在國家與國際層面上共同努力促進AI道德規範,並根據以下原則來發展和使用人工智慧。第一,良好的創新:人工智慧系統必須是可理解得,並且在包容性方面必須考慮到所有人的需求,以便每個人都能受益。第二,責任:設計和實施人工智慧者必須承擔責任和保持透明度。第三,公正性:避免根據偏見進行創造或採取行動,從而維護人類平等和尊嚴。第四,可靠性:人工智慧系統必須能夠可靠的運行。第五,安全和隱私:人工智慧系統必須安全運行並尊重用戶的隱私。 目前尚不清楚其他技術公司是否會簽署該文件,以及簽署人將如何實施,但教宗與兩大科技巨頭史無前例的合作,為人工智慧未來發展方向提供遠見卓識,能更加深入的去思考AI的道德意涵以及它將如何與人類更好的合作、互動,互利共生,相輔相成。
英國核准全球首例人類胚胎基因體編輯研究英國人類生殖及胚胎學管理局(Human Fertilisation and Embryology Authority)的執照委員會(Licence Committee)於2016年1月14日更新(renew)了法蘭西斯克利克研究中心(Francis Crick Institute)所持有的研究執照。該項更新的內容,成為全球首例由政府核准的人類胚胎基因體編輯研究。 本次更新的執照,是針對標號R0162實驗計畫(research project)所簽發的。該計畫全名是「人類剩餘胚胎幹細胞之研究:人類胚胎幹細胞之培養、維持多能性之因子特性以及形成可移植組織所需的特殊分化」(Derivation of stem cells from human surplus embryos: the development of human embryonic stem cell (hES) cultures, characterisation of factor necessary for maintaining pluripotency and specific differentiation towards transplantable tissues),該計畫的執照是在2005年時核准,有效期限至2016年3月26日。本次申請更新主要的變動有二,一是將計畫全名中的「剩餘」(surplus)二字拿掉,一是在執照內新增基因體編輯的研究技術──「CRISPR/Cas9」,並計劃將其運用在人類胚胎之上。 審查由人類生殖及胚胎學管理局所屬的執照委員會負責,該委員會由四位委員組成,有兩位行政機關人員負責行政事務,並有一名來自民間律師事務所的法律顧問負責提供法律意見諮詢的服務。 在審查的過程中,委員會依據申請人提交的計畫以及兩份同儕審查(peer review)的意見,審查了該計畫對人類胚胎進行人體試驗的可行性、必要性及合法性等議題。委員會確認該計畫的研究目的符合相關法令的要求,亦遵守規定不會使胚胎、卵子或精子置入女性身體或使其發育超過14天,同時該研究並確實為研究人類胚胎發育上所必要,也嚴格限制了使用的數量。 委員會僅對於其基因體編輯技術上未取得研究倫理委員會(Research Ethics Committee)的同意一事有所疑慮。委員會認為申請人應先取得研究倫理委員會的同意,才可申請執照。申請人解釋研究倫理委員會要求申請人要先取得執照更新後才願意開始審理,並承諾在通過倫理委員會同意後,才會開始相關實驗。在法律顧問的建議下,委員會最終通過了本次執照的更新,但在執照上加註相關實驗需待取得研究倫理委員會同意,並通知人類生殖與胚胎學管理局後,才可以實施。 委員會最終決定核發有效期限3年的執照給予該研究機關,於有效期限內,該研究機構可以保存、利用、儲藏胚胎。
預付型商品之規範-以日本法為借鏡 醫療物聯網(The Internet of Medical Things, IoMT)醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。 就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。 由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。