Google被控不當蒐集蘋果公司Safari瀏覽器用戶的個人資料

  案件緣於Judith Vidal-Hall等三人對Google提告,主張Google規避蘋果公司Safari瀏覽器預設之隱私設定,在未取得用戶同意前,逕行使用cookies追蹤其網路活動,蒐集瀏覽器產生的資訊(the Browser-Generated Information, or ‘BGI’),並利用其對用戶發送目標廣告。原告認為這些作法可能使用戶的隱私資訊被第三人所探知,而且與Google保護隱私之公開聲明立場相違。此案於2015年3月27日由英國上訴審法官做成判決,並進入審理程序(裁判字號:[2015] EWCA Civ 311)。

  本案主要爭點包含,究竟用戶因使用瀏覽器所產生的資訊是否屬於個人資料?濫用隱私資訊是否構成侵權行為?以及在沒有金錢損失(pecuniary loss)的情形下,是否仍符合英國資料保護法(Data Protection Act 1998)第13條所指損害(damage)的定義,進而得請求損害賠償?

  法院於判決認定,英國資料保護法旨在實現「歐盟個人資料保護指令」(Data Protection Directive,95/46/EC)保護隱私權的規定,而非經濟上之權利,用以確保資料處理系統(data-processing systems)尊重並保護個人的基本權利及自由。並進一步說明,因隱私權的侵害往往造成精神損害,而非財產損害,從歐洲人權公約(European Convention of Human Rights)第八條之規定觀之,為求對於隱私權的保障,允許非財產權利的回復;倘若限縮對於損害(damage)的解釋,將會有礙於「歐盟個人資料保護指令」立法目的的貫徹。

  法院強調,該判決並未創造新的訴因(cause of action),而是對於已經存在的訴因給予正確的法律定位。從而,因資料控制者(data controller)的不法侵害行為的任何損害,都可以依據英國資料保護法第13條第2項請求損害賠償。

  本案原告律師表示:「這是一則具有里程碑意義的判決。」、「這開啟了一扇門,讓數以百萬計的英國蘋果用戶有機會對Google提起集體訴訟」。原告之一的Judith Vidal-Hall對此也表示肯定:「這是一場以弱勝強(David and Goliath)的勝利。」

  註:Google 在2012年,曾因對蘋果公司在美國蒐集使用Safari瀏覽器用戶的個資,與美國聯邦貿易委員會(United States Federal Trade Commission)以2,250萬美元進行和解。

相關連結
※ Google被控不當蒐集蘋果公司Safari瀏覽器用戶的個人資料, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6883&no=0&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
英國禁止限制級(R18級)情色影片以網路方式行銷

  為貫徹對未成年人的保護,避免未成年人以網路方式購買 R18 級情色影片,英國政府規定該類影片只能於獲有執照之供應商店販售,並僅有實際到店的顧客方得購買,禁止以郵購、網路或電話方式行銷,引發業者反彈,其中兩家公司遭受罰鍰處分後提起訴訟,日前上訴英國高等法院 (High Court) 主張此項限制對英國境內業者並不公平,境外業者可以規避此限制而仍於網路上販售 R18 級影片,將嚴重影響英國境內業者的發展。   該法院於五月二十三日作出決定認為此項限制為合法,蓋因網路購物難以確認購買者的年齡,強制規定必須到店購買將有助於確認購買者是否已達法定年齡,降低未成年人購得 R18 級影片的可能性。

美國聯邦加強導入節能績效保證專案,並規劃採購實務增訂規範

  美國總統歐巴馬於2011年12月發布備忘錄(Presidential Memorandum),要求美國聯邦政府應加強「導入節能績效保證專案(Implementation of Energy Savings Projects and Performance-Based Contracting for Energy Savings)」,並宣布未來24個月內最少將投入20億(billion)美元經費,推動聯邦機構採購實施節能績效保證專案,以改善建築物能源效率。基於政策指示,美國能源部(Department of Energy)下屬聯邦能源管理推動機構(Federal Energy Management Program,以下簡稱FEMP),研議規劃配套機制,協助導入「節能績效保證專案(Energy Savings Performance Contract,以下簡稱ESPC)」,更精簡、效率、低成本之實施模式,並助益美國能源技術服務產業(Energy Service Companies,以下簡稱ESCO)發展。   美國FEMP於2012年2月公告ESPC採購關於「資金(Financing)」部分之「資訊徵求意見書(Request for Information,RFI)」,廣詢實務各界意見,希望能繼而落實於政府採購規範及契約範本之研議,並協助ESCO業者能更順利取得資金,並協助ESCO業者能更順利取得資金,及降低資金取得成本,如此亦可有利益於所採購導入之聯邦機構。   FEMP主要係規劃探討關於ESPC融資資金,最合理且有吸引力之利率,所應考慮各項要件及利率定價模式,並且規劃建立資金協助者之優先名單(Preferred Financiers),以利配套選用。再者FEMP為推動整合,特別探討ESPC跨專案(Project Aggregation (Combining))時,可能影響資金協助者之融資與財務評估,例如數ESPC專案、數ESCO業者、由同一資金協助者承接,或是數ESPC專案、數實施地點、同一ESCO業者,同一資金協助者,亦或者數ESPC專案、數實施地點、數ESCO業者、但同一政府機構、且同一資金協助者,研析相關影響要件。   以及,FEMP並探討ESPC實施「量測驗證(Measurement and Verification),對於取得融資評估過程是否增加複雜影響因素,以及資金協助者對於量測驗證機制,是否認為將增加風險並致更高融資利率,均為重要探討議題。此項意見徵求書,未來將落實於聯邦機構政府採購之實務規範上,相關內容再持續觀察追蹤。

美國加州公共事業委員會提出自動駕駛車輛試點計畫

  加州公共事業委員會(California Public Utilities Commission, CPUC)提出自駕車試點計畫,允許在未有配置人類駕駛之情況下測試自駕車,此次計畫包含兩個試點項目,將於5月被五人委員會審核,並決定是否批准。   第一個試點項目允許參與廠商之自駕車上路測試,並須配置經培訓的人類駕駛於自駕車內,以應付隨時的突發狀況;第二個試點項目則允許無人駕駛之自駕車上路測試,惟在無人類駕駛隨車之情況,必須符合加州機動車輛管理局(Department of Motor Vehicles, DMV)之規定,如遠端監控車輛狀態及操作,以保障乘客安全。   參與廠商必須定期向CPUC及DMV繳交營運報告,包含測試期間車輛碰撞(collision)及解除自動駕駛(disengagement)次數。   此次試點計畫已開放廠商申請,科技大廠及叫車服務公司如Google、Tesla、Uber以及Lyft等目前亦已正進行自駕車之設計與測試。若此提案通過,CPUC將進一步規劃自駕車載客服務之相關辦法,使自駕車測試之法制更臻完善。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP