美國科技公司指控六名中國人竊取科技公司營業秘密

  美國司法部起訴六名中國大陸公民,包含三名大學教授,在美從事商業間諜活動,自兩間科技公司竊取有關行動通訊技術的敏感資料,並已經提供中國大陸的大學及企業預備產製。如果罪名成立,最多可判刑15年。被竊取營業秘密包括載有薄膜體聲波共振器(FBAR)的原始碼、規格、配方等文件,主要應用在行動通訊,如平版、智慧型手機、GPS設備等消費性產品及軍事、國防通訊技術,其作用在於過濾無線訊號,改善通訊品質。

  據報導,其中兩名被告張浩與龐慰為天津大學的教授,在美國南加州的一所大學攻讀電子工程學博士學位相識,期間獲得國防高等研究計劃署 (DARPA)提供的研究經費,研究FBAR技術。2005年取得學位後,分別進入Avago Technologies與Skyworks Solutions科技公司擔任FBAR工程師,並竊取分別屬於二公司的營業秘密。2006至2007年間,更開始接觸中國大陸的大學,尋找生產FBAR技術的可能性,最終得到天津大學支援,在中國大陸建立FBAR技術中心,更在2009年分別自二科技公司離職,擔任天津大學的全職教授,同時合資成立ROFS精密儀器公司,計畫生產FBAR產品,並已和企業和軍方簽訂契約。

  美國政府表示,外國機構利用在美國活動的個人從事商業間諜活動,竊取美國企業投入高額成本開發的技術資料,將造成美國企業的重大損失,削弱市場競爭力,最終損害美國在全球經濟的利益,故將持續調查、蒐集不法證據,以打擊商業間諜活動與制止竊取營業秘密為首要任務。

相關連結
※ 美國科技公司指控六名中國人竊取科技公司營業秘密, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6884&no=67&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
申請專利時請注意:網頁內容亦可能成為「先前技術」(prior art)

  日前英國智慧局 (UK Intellectual Property Office) 裁定一則刊登描述銀行用於網路交易時辨識方法的新聞網頁可以做為「先前技術」的有效證據。該局的副局長,同時亦是專利總審查官 Ben Micklewright 指出,網頁上的日期以及內容應該以英美法民事案件中的「機率的平衡」(on the balance of probabilities) 來衡量其證據力。   法國匯豐銀行(HSBC France) 於2005年7月以一項辨識使用者身份的方法對英國智慧局提出專利申請。該方法包含使用者登入時需輸入一組特定的密碼以辨明身份。HSBC France 於申請時以2004年7月2日在法國的申請日期主張優先權。然而英國智慧局的審查官卻依2項證據核駁了 HSBC France 的上述申請,當中一項即為一篇於2004年2月20日刊載於知名雜誌 Computer Magazine 的網站上的文章。該文章描述了一項由 Lloyds TSB提案的身份辨識方法,與HSBC France 提出專利申請的方法有異曲同工之處。   對此 HSBC France 提出抗辨,指出該文章有電子版與紙本,然審查官卻無法提出紙本來證明其公開發表日期。同時HSBC France 亦主張英國智慧局應追隨一件由歐洲專利局 (EPO) 上訴庭的判決,該判決中指出對於網路上電子文章的證據負荷度應高於傳統文件,即應負「無可懷疑」(beyond reasonable doubt)的舉證力。然而 Ben Micklewright 副局長表示英國智慧局無須追從歐洲專利局的判決,並且因為已存在「先前技術」所以該申請案喪失進步性。他更進一步指出上述申請案無論如何皆無法取得商業方法專利,因為該方法不具備技術的本質(“is not technical in nature”)。

美國加州通過美國第一部規範藥品專利侵權和解協議中遲延給付條款之州法,推定其具有反競爭性

  美國加州議會於2019年9月12日通過《加州法案AB 824,商業:保持人們對負擔得起的藥物之近用(California AB 824 - Business: preserving access to affordable drugs)》(下稱AB 824法案),其主要規範藥品專利侵權和解協議中之「遲延給付(pay for delay)」條款,推定其具有反競爭性,為美國第一部規範製藥公司之間簽訂遲延給付條款之州法。   於AB 824法案中,其規範對象為學名藥與生物相似性藥物之藥證申請人,統稱為「非參照藥物申請者(Nonreference drug filer)」。其規定若用來解決專利侵權之協議為「非參照藥物申請者」從主張專利被侵害的公司處接受任何有價值之物,且同意於一段期間內限制或放棄學名藥或生物相似性藥品的研究、開發、製造、上市、銷售,則該協議推定具有反競爭效果。惟例外若能證明「非參照藥物申請者」所獲得之價值僅對其他商品或服務是公平合理的補償、協議直接產生了競爭優勢,協議的競爭優勢大於協議的反競爭效果,則反競爭性之推定可舉上述事由為證而推翻。每次違規行為可處以高達2000萬美元或「非參照藥物申請者」收到的價值三倍的罰款,以數額高者為準。   AB 824法案減輕政府舉證責任的負擔,將主張和解協議不具反競爭效果之舉證責任轉移至和解協議當事人身上,且因此種推定,當事人必須向政府揭露更多和解協議之資訊,而增加協議之透明度。

日本公布第6期科學技術與創新基本計畫草案並募集公眾意見,著重疫情與科技基本法修正後之因應

  日本內閣府於2021年1月20日發布「第6期科學技術與創新基本計畫」(科学技術・イノベーション基本計画,以下稱第6期科技創新基本計畫)草案,並自即日起至同年2月10日,對外徵求公眾意見。依2020年6月修正通過之日本科學技術與創新基本法(科学技術・イノベーション基本法,預定2021年正式公告施行)第12條規定,要求政府應就振興科學技術與創新創造的政策,擬定基本計畫並適時檢討調整,同時對外公告。而本次草案的提出,便為因應現行的第5期科學技術基本計畫即將屆期,啟動擬定下一期基本計畫。   依草案內容,第6期科技創新基本計畫延續Society5.0的願景,並以數位化及數位科技作為發展核心。但檢視至今的科技創新政策成效,數位化進程不如政策目標所預期;受COVID-19疫情影響,也提升了科技普及化應用的重要性。另一方面,科學技術基本法的修正,則揭示了人文社會科學與自然科學跨域融合運用的方向,並期待藉由創新創造納為立法目的,實現進一步的價值創造。基此,第6期科技創新基本計畫提出,應從強化創新、研究能量及確保人才與資金的三方向為主軸,結合SDGs、數位化、資料驅動及日本共通在地價值,建構出「日本模型」(Japan Model)作為實現Society5.0的框架。   針對如何強化創新能力、研究能量及確保人才與資金,計畫草案提出以下方向: (1)強化創新能力:整體性強化創新生態系(innovation ecosystem),建構具韌性的社會體系,並有計畫地推動具社會應用可能的研發活動。具體作法包含藉由AI與資料促成虛擬空間與現實世界的互動優化、持續縮減碳排放量實現循環經濟、減低自然災害與傳染病流行對經濟社會造成的風險、自社會需求出發推動產業結構走向創新、拓展智慧城市(smart city)的應用地域等。 (2)強化研究能力:鼓勵開放科學與資料驅動型之研究,並強化研究設備、機器等基礎設施的遠端與智慧機能,推動研究體系的數位轉型;以資料驅動型為目標,多元拓展具高附加價值的研究,包含生命科學、環境、能源、海洋、防災等領域;擴張大學的機能,如增進大學的自主性,從經營的角度調整與鬆綁國立大學法人的管理與績效評鑑方式等,用以厚植創新基底。 (3)人才培育及資金循環:目標培養具備應變力與設定議題能力的人才;同時藉由資助前瞻性研發,結合大學的基礎科研成果,激發創新的產出及延伸收益,並回頭挹注於研發,建立研發資金的循環運用體系。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP