美國科技公司指控六名中國人竊取科技公司營業秘密

  美國司法部起訴六名中國大陸公民,包含三名大學教授,在美從事商業間諜活動,自兩間科技公司竊取有關行動通訊技術的敏感資料,並已經提供中國大陸的大學及企業預備產製。如果罪名成立,最多可判刑15年。被竊取營業秘密包括載有薄膜體聲波共振器(FBAR)的原始碼、規格、配方等文件,主要應用在行動通訊,如平版、智慧型手機、GPS設備等消費性產品及軍事、國防通訊技術,其作用在於過濾無線訊號,改善通訊品質。

  據報導,其中兩名被告張浩與龐慰為天津大學的教授,在美國南加州的一所大學攻讀電子工程學博士學位相識,期間獲得國防高等研究計劃署 (DARPA)提供的研究經費,研究FBAR技術。2005年取得學位後,分別進入Avago Technologies與Skyworks Solutions科技公司擔任FBAR工程師,並竊取分別屬於二公司的營業秘密。2006至2007年間,更開始接觸中國大陸的大學,尋找生產FBAR技術的可能性,最終得到天津大學支援,在中國大陸建立FBAR技術中心,更在2009年分別自二科技公司離職,擔任天津大學的全職教授,同時合資成立ROFS精密儀器公司,計畫生產FBAR產品,並已和企業和軍方簽訂契約。

  美國政府表示,外國機構利用在美國活動的個人從事商業間諜活動,竊取美國企業投入高額成本開發的技術資料,將造成美國企業的重大損失,削弱市場競爭力,最終損害美國在全球經濟的利益,故將持續調查、蒐集不法證據,以打擊商業間諜活動與制止竊取營業秘密為首要任務。

相關連結
※ 美國科技公司指控六名中國人竊取科技公司營業秘密, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6884&no=67&tp=1 (最後瀏覽日:2026/02/02)
引註此篇文章
你可能還會想看
美國最高法院在電影蠻牛案中釐清權利行使怠惰原則之適用

  美國最高法於近日判決電影編劇Frank Petrella之女得對電影公司MGM對其父親於1963年以世界中量級拳王Jake LaMotta生平創作的劇本蠻牛(Raging Bull)持續性的商業利用行為提出侵權訴訟。   本案緣起於在美國著作權法下,1978年以前發表的著作受到28年的著作權保護,並得於到期後延展保護67年,而若作者在延展之前死亡亦即本案情形,著作受讓人僅得於繼承人移轉延展權的情況下繼續使用,而著作權法507(b)規定民事賠償請求需於侵權行為發生後的三年內提出。   原告編劇Frank Petrella之女於2009年向MGM提出2006年後侵權行為之賠償,MGM則以法律不保護權利怠於行使之人(thedoctrine of laches)作為抗辯,主張原告不得起訴。地方法院及第九巡迴上訴法院皆贊同被告MGM之主張,認為原告於1991年延展著作權保護時即知悉,此舉對MGM並不合理且帶有偏見。   最高法院近日推翻下級法院的看法,認為權利行使怠惰並不阻卻權利人對請求權時效內發生的侵權行為提出訴訟,同時更進一步釐清著作權法507(b)允許權利人評估值得尋求訴訟救濟的時間點,除非權利人刻意誤導第三人不會對其起訴,而這是禁反言原則(thedoctrine of estoppel)的問題,本案下級法院顯然混淆了二者之區別,從而肯定原告有權向MGM請求著作權侵害之損害賠償。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

美國商務部調整《出口管制規則》允許美國企業與華為合作制定5G標準

  美國商務部工業安全局(Department of Commerce, Bureau of Industry and Security, BIS)於2020年6月15日宣布修改《出口管制規則》(Export Administration Regulations, EAR),調整美國企業和中國大陸華為公司商業往來的相關禁令,允許美國企業和華為合作制定5G標準。國際標準為技術開發的重要基礎,企業在標準制定的參與和領導力,將同步影響5G、自動駕駛、AI及其他尖端技術的未來發展;美國為鞏固全球創新領導地位,積極倡導國內產業參與標準制定成為國際標準,保護國家安全與外交政策利益。雖然華為及其關係企業在2019年5月,因存在重大國家安全風險,被美國商務部列入實體管制清單,禁止美國企業在未獲商務部許可的情況下與華為進行任何業務往來,但此項政策不應妨礙美國企業參與重要的國際標準制定活動。   本次《出口管制規則》補充「一般性暫行核准(Temporary General License)」附錄,允許華為及其68家關係企業在參與國際標準化組織與5G標準制定等特殊情形下,得依據美國行政管理和預算局(Office of Management and Budget, OMB)A-119號通知所制定之標準,取得《出口管制規則》中涉及EAR99或出於反恐原因被列入美國商業管制清單之貨品與技術。代表美國企業毋需取得商務部的暫行核准,也可以在國際標準制定組織中與中國大陸華為等公司分享用於制定5G標準的相關資訊,甚至合作制定5G標準。另外,《出口管制規則》僅在非出於商業目的之合法標準制定情況下,允許美國企業向華為及其關係企業揭露此類技術;若是出於商業目的揭露,仍然須受《出口管制規則》拘束並應保存記錄。

法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)

法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。

TOP