美國司法部起訴六名中國大陸公民,包含三名大學教授,在美從事商業間諜活動,自兩間科技公司竊取有關行動通訊技術的敏感資料,並已經提供中國大陸的大學及企業預備產製。如果罪名成立,最多可判刑15年。被竊取營業秘密包括載有薄膜體聲波共振器(FBAR)的原始碼、規格、配方等文件,主要應用在行動通訊,如平版、智慧型手機、GPS設備等消費性產品及軍事、國防通訊技術,其作用在於過濾無線訊號,改善通訊品質。
據報導,其中兩名被告張浩與龐慰為天津大學的教授,在美國南加州的一所大學攻讀電子工程學博士學位相識,期間獲得國防高等研究計劃署 (DARPA)提供的研究經費,研究FBAR技術。2005年取得學位後,分別進入Avago Technologies與Skyworks Solutions科技公司擔任FBAR工程師,並竊取分別屬於二公司的營業秘密。2006至2007年間,更開始接觸中國大陸的大學,尋找生產FBAR技術的可能性,最終得到天津大學支援,在中國大陸建立FBAR技術中心,更在2009年分別自二科技公司離職,擔任天津大學的全職教授,同時合資成立ROFS精密儀器公司,計畫生產FBAR產品,並已和企業和軍方簽訂契約。
美國政府表示,外國機構利用在美國活動的個人從事商業間諜活動,竊取美國企業投入高額成本開發的技術資料,將造成美國企業的重大損失,削弱市場競爭力,最終損害美國在全球經濟的利益,故將持續調查、蒐集不法證據,以打擊商業間諜活動與制止竊取營業秘密為首要任務。
德國Essen地方法院判決(Az. 44 O 79/07),網站上之聯絡我們的功能(Contact-Formula),並不符合網路服務者依德國電信服務法第5條(Telemediengesetz, TMG)所應遵守之資訊揭露義務*。 根據德國電信服務法第5條第1項第2款規定,網路服務提供者之資訊揭露義務範圍,包括應提供一個供網路使用者可以快速且直接聯繫網路服務提供者之電子聯繫方式,例如提供電子郵件。 按德國電信服務法第5條規定目的在提供消費者法定之保護,而違反本條規定者,將可依德國「不正競爭防止法,UWG」第4條第11款及第2條第1項第2款規定,視為違反公平競爭之行為。 該法院認為,網站上「連絡我們功能(Contact-Formula)」性質上僅屬於一個用以製造連結的科技措施,使用者需填寫網站上表格,按下傳送鍵後,始能得知網路服務者之電子郵件,而有些網站甚至無法顯示網路服務者之電子郵件。 我國於「電子商務消費者保護綱領」第5點企業經營者應提供有利於消費者選擇及進行交易之充分資訊包括「企業經營者本身資訊」,例如登記名稱、負責人姓名及公司簡介、公司或商號所在地及營業處所所在地、電子郵件、電話、傳真等聯絡方式及聯絡人等資訊,資訊提供範圍與德國電信服務法第5條第1項第2款大抵相同。 *德國電信服務法(TMG)第5條網路服務者應揭露之資訊範圍包括其聯繫資料、特許職業執照證號、營利事業登記證號等。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟公布智慧運輸系統指令授權規則歐盟執委會於2019年3月13日針對清潔,聯網和自動化移動戰略,公布智慧運輸系統指令授權規則(Commission Delegated Regulation of 13.3.2019 supplementing Directive 2010/40/EU of the European Parliament and of the Council with regard to the deployment and operational use of cooperative intelligent transport systems),該授權規則(Delegated Regulation)係歐盟執委會為執行智慧運輸系統指令(ITS Directive)所制訂之相關細則,其目的使執委會與會員國合作提出指導分針,進一步讓各國能夠對自動及聯網化駕駛車輛進行型式認可,以加速相關創新運輸技術於歐洲協同式智慧運輸系統(C-ITS)之發展。其創新技術包含使車輛間可相互「交談」,或與道路基礎設施以及其他道路使用者「交談」,可應用在例如危險情況,道路施工和掌控交通號誌時間,將使公路運輸更安全,更清潔,更高效率。授權規則將符合容克委員會(Juncker Commission),即現任歐盟執委會主席容克領導的執政團隊,其所提出的清潔移動提案( Proposals on clean mobility),是歐盟移動現代化的另一步驟,也為本世紀下半葉的氣候中和(climate neutral)目標,即達到溫室氣體排放總量為零之目標作準備,並持續達到歐盟2050年交通事故近零死亡或零嚴重傷害的目標。 歐盟移動及運輸專員Violeta Bulc表示:「此決定將為車輛製造商,道路營運者和其他人提供一個法源依據,以便於歐洲開始大規模發展C-ITS服務,同時對新技術和市場發展持開放態度。此將極力促進我們實現我們對道路安全的願景,並作為實現聯網化和自動化移動性的重要基礎。」 車輛,交通號誌和高速公路在裝配合規之聯網技術裝置後,可向周圍的所有交通使用者發送標準化之訊息,此將是實現車間通訊的重要里程碑。該授權規則將確保不同系統間擁有協同工作能力,使所有配備該技術的站點能在開放網路中安全地與任何其他站點交換資訊,並讓系統可順利運行,透過車輛間以及車輛和交通基礎設施之間的連接,也能幫助駕駛員做出正確的決策並視交通狀況來改善道路安全性、交通效率及舒適性。
因應京都議定書 1500家企業須揭露環境資訊經濟部將在近日研商成立「輔導推動委員會」,至遲在今年底、明年初推動環境資訊揭露制度。根據經濟部初步規劃,「企業環境資訊揭露」制度,將先鎖定京都議定書溫室氣體減量規範,要求企業揭露 CO2 排放量盤查資訊及減量努力與目標,並鎖定「環境數據」、「社會責任」及「環境活動」三方面,要求企業說明因應 CO2 減量的努力情形。 「環境資訊揭露制度」將依是否上市櫃及企業規模,要求不同程度的資訊揭露。上市公司,列為「義務性揭露」,必須將「環境資訊」列入重大訊息予以公開揭露;營業額達 1 億元以上的企業及上櫃、興櫃公司,屬「自願性揭露」,以漸進的方式,在該機制實施後二年內達到「完整環境資訊揭露」;中小企業則採取「鼓勵性揭露」。 今年 5 月間,證期局為保障國內投資人,曾強制 972 家電子電機上市櫃公司,以「重大訊息」說明公司因應歐盟有毒物質禁用指令( RoHS )的情形,此一要求僅為「環保支出」之資訊,並未要求說明未來因應對策及可能支出。故經濟部希望透過「環境資訊揭露」制度的建立,讓企業從被動提報「環保支出」,提升到主動揭露「環境資訊」,並逐漸建立企業環境會計制度,因應國際環保趨勢。