美國推動醫療器材「單一識別」(Unique Device Identification, UDI)系統已行之有年,藉由建立UDI系統,強化醫療器材錯誤回報(Adverse Event Report)以及上市後產品監督(Post-Market Surveillance)等相關資訊的流通,以保障病人的安全。2007年由美國國會所通過的《食品藥物管理法修正案》(Food and Drug Administration Amendments Act of 2007, FDAAA)第226項,修正《食品、藥物及化妝品法》(Federal Food, Drug, and Cosmetic Act , FD&C Act)新增第519項f款,提供美國食品藥物管理局(U.S. Food and Drug Administration, FDA)訂定「醫療器材單一識別系統」法規之法源基礎。另一方面,在美國國會的要求之下,FDA於2012年7月3日正式發布「醫療器材單一識別碼系統」規則草案,進行公眾預告與評論(Notice and Comment)程序。 FDA長期收集醫療器材產業、醫療社群、病人與消費者,以及產業專家之建議,而將這些建議呈現在規則草案內容中,目的在於減少廠商成本,並順利建置UDI系統,是故草案內容實採取某些公司實際使用的標準與系統經驗。FDA所發布的規則草案重點如下: 1.「單一識別碼」將分為「器材識別碼」(Device Identifier),包含特定器材的單一識別;「生產識別碼」(Production Identifier),包含器材的生產資訊。 2.將採取區分醫療器材風險程度之高低作為標準,分階段置入高風險的醫療器材的「單一識別碼系統」;低風險的醫療器材將有條件在部分或全部的規則中例外免除。 3.免除零售的非處方(Over the Counter)醫療器材適用此規範,係因這些器材尚有統一商品條碼(Universal Product Code, UPC)作為識別。 FDA宣稱,隨著系統的建置與規範的制定,絕大多數的醫療器材將必須具有統一的日期標準,包含標籤上的到期日;亦必須使UDI能夠容易閱讀,且能為系統自動識別與應用資料擷取技術,進一步成為全球UDI資料庫建置的標準。我國目前雖尚無UDI系統的相關法規範,但產業與主管機關已就相關議題進行討論,而FDA所發佈的規則草案之發展歷程,即可作為相關單位在制定法規之參考,藉此瞭解先進國家在此議題之發展,提早與先進國家之標準做接軌。
日本個人資料保護法修正案允許變更利用目的引發各界議論日本國會於本會期(2015年1月)中,進行個人資料保護法修正草案(個人情報保護法の改正案)的審議。修正草案研擬之際,歷經多次討論,IT總合戰略本部終於在2014年6月公布修正大綱,後於同年12月公布其架構核心。 本次修正,主要目標之一,是使日本成為歐盟(EU)所認可之個人資料保護程度充足的國家,進而成為歐盟所承認得為國際傳輸個人資料的對象國;為此,此次修正新增若干強化措施,包含(1)設立「個人資料保護委員會」;(2)明訂敏感資料(包含種族、病歷、犯罪前科等)應予以嚴格處理;(3)明訂資料當事人就其個人資料得行使查詢或請求閱覽等權利。 本次修正的另一個目標,則是促進個人資料利用及活用的可能性。2014年中,日本內閣府提出「有關個人資料利活用制度修正大綱」,提倡利用、活用個人資料所帶來的公共利益,並指出,過往的法規僅建構於避免個人資料被濫用的基礎,已不符合當今需求,且易造成適用上的灰色地帶,應透過修法予以去除;未來應推動資料的利用與活用相關制度,來提升資料當事人及公眾的利益。本次修正因此配合鬆綁,允許符合下述法定條件下,得變更個人資料之利用目的:(1)於個人資料之蒐集時,即把未來可能變更利用目的之意旨通知資料當事人;(2)依個人資料保護委員會所訂規則,將變更後的利用目的、個人資料項目、及資料當事人於變更利用目的後請求停止利用的管道等,預先通知本人;(3)須使資料當事人容易知悉變更利用目的等內容;(4)須向個人資料保護委員會申請。 目標間的兩相衝突,使得該案提送國會審議時,引發諸多爭議。論者指出:允許在特定條件上變更個人資料的利用目的,雖顧全資料利用的價值,但似不符合歐盟個人資料保護指令對於個人資料保護的基準,恐使日本無法獲得歐盟認可成為資料保護程度充足的國家,亦徹底喪失此次修正的最重要意義。
美國「國家製造創新網絡智慧財產指南」美國之「國家製造創新網絡智慧財產指南」(Guidance on Intellectual Property: National Network for Manufacturing Innovation) 係由先進製造國家計畫辦公室(Advanced Manufacturing National Program Office, AMNPO)於2015年3月公布。本指南係就智財策略之擬定,向製造創新之機構提供相關原則與彈性的框架,並同時釐清關鍵之智慧財產權利。此所稱之製造創新機構,係指2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014)第34條(c)項所界定之機構,亦即為因應先進製造相關挑戰並協助製造業保持與擴展工業產品與就業機會之公私合營機構。 「國家製造創新網絡智慧財產指南」大別為9類共14項原則:(1)機構層級之智慧財產管理;(2)專案層級之智慧財產管理;(3)智慧財產所有權;(4)機構研發之智慧財產(Institute-Developed Intellectual Property, IDIP)權利;(5)非機構研發之智慧財產權利;(6)基礎智慧財產;(7)資料權利與管理;(8)出版權;(9)政府權利。以資料權利與管理為例,該類之下的第一項原則要求機構應研擬符合出口管制法規之資料計畫,並在計畫中界定與區分機構內部資料之類型,以及為維持機密性與網路安全所需之資料近用與管控。 我國於2015年9月公布「行政院生產力4.0發展方案」,發展方案於「掌握關鍵技術自主能力」之主策略下,由經濟部技術處主政推動成立「台灣生產力4.0研發夥伴聯盟(Taiwan Productivity 4.0 Partnership)」,透過政府民間之合作提升關鍵技術自主能力的同時,智慧財產權利相關配套措施自屬重要。
G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢 資訊工業策進會科技法律研究所 2025年03月10日 七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。 壹、緣起 由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。 本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。 貳、重點說明 基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下: 一、《關於促進可信賴AI的資料保護機構角色的聲明》 繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。 基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]: 1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。 2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。 3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。 4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。 5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。 二、《關於AI與兒童的聲明》 鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。 本聲明進一步闡述,當前及潛在侵害的風險包含[11]: 1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。 2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。 3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。 三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》 考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下: 1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。 2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。 3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。 參、事件評析 本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。 此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。 最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。 [1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025). [2]Id. at para. 5. [3]Id. at para. 7-9. [4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025). [5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025). [6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025). [7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025). [8]Supra note 4, at para. 11. [9]Supra note 4, at para. 18. [10]Supra note 5, at para. 5-6. [11]Supra note 5, at para. 7. [12]Supra note 6, at para. 11-15. [13]Supra note 6, at para. 16-19. [14]Supra note 6, at para. 20-25. [15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).