德國與愛爾蘭資料保護局對於資料保護指令所規定個人資料(以下簡稱個資)的處理(process),是否須取得資料當事人明示同意,表示不同的見解。德國資料保護局認為臉書網站所提供之人臉辨識(預設加入)選擇退出(opt out consent)的設定,並不符合資料保護指令(Data Protection Directive)對於同意(consent)的規範,且有違資訊自主權(self-determination);然而,愛爾蘭資料保護局則認為選擇退出的機制並未牴觸資料保護指令。
德國資料保護局委員Johannes Caspar教授表示,預設同意蒐集、使用與揭露,再讓資料當事人可選擇取消預設的作法,其實已經違反資訊自主權(self-determination)。並主張當以當事人同意作為個人資料處理之法律依據時,必須取得資料當事人對其個資處理(processing)之明示同意(explicit consent)。對於部長理事會(Council of Ministers)認同倘資料當事人未表達歧見(unambiguous),則企業或組織即可處理其個人資料的見解,Caspar教授亦無法予以苟同。他認為部長理事會的建議,不但與目前正在修訂的歐盟資料保護規則草案不符,更是有違現行個資保護指令的規定。
有學者認為「同意」一詞雖然不是非常抽象的法律概念,但也不是絕對客觀的概念,尤其是將「同意」單獨分開來看的時候,結果可能不太一樣;對於「同意」的理解,可能受到其他因素,特別文化和社會整體,的影響,上述德國和愛爾蘭資料保護局之意見分歧即為最好案例。
對於同意(consent)的落實是否總是須由資料當事人之明示同意,為近來資料保護規則草案(The Proposed EU General Data Protection Regulation)增修時受熱烈討論的核心議題。資料保護規則草案即將成為歐盟會員國一致適用的規則,應減少分歧,然而對於企業來說,仍需要正視即將實施的規則有解釋不一致的情況,這也是目前討論資料保護規則草案時所面臨的難題之一。
本文為「經濟部產業技術司科技專案成果」
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
澳洲聯邦法院判決 Kazaa軟體的業者—Sherman Networks敗訴日前澳洲聯邦法院針對四家唱片公司 (包括Universal、Sony、Warner以及 Festival Mushroom)聯合控告提供檔案分享Kazaa軟體的業者—Sherman Networks一案作出判決。法官Murray Wilcox駁回原告聲稱Sherman Networks違反澳洲交易行為法(Trade Practices Act)以及Sherman Networks本身有從事著作權侵害的主張。但是,法官Wilcox指出Sherman Networks授權使用者侵害原告的著作權,並有鼓勵年輕人侵害著作權的情況。Sherman Networks在Kazaa網站的網頁中放置批評反對P2P軟體的唱片公司的標語--Join the Revolution,以及贊助攻擊唱片公司的文宣--Kazaa Revolution。這些標語、文宣並未明白地鼓吹使用者分享檔案,但是這會對於青少年認為以漠視唱片公司之著作權的方式來挑戰唱片公司是一件很「酷」的事情,而Kazaa的使用者多數是青少年。 法官 Wilcox判決被告必須支付90%的訴訟費用,並指出在Sherman Networks符合下列條件之一的情況下,Kazaa可以繼續營運: 1. 必須在現有的以及未來的版本中納入強制性關鍵字過濾技術 (non optional key word filter technology),並且竭盡所能地要求既有使用者將版本更新至含有此技術的版本。 2.Altnet搜尋軟體,又稱之為TopSearch,只能提供未有侵害到他人著作權之作品的清單。 除此之外,法官 Wilcox亦為本案的上訴程序設下二個條件,第一個是上訴時間最快為明年2月,上訴法院為Full Court,第二個是Kazza軟體的修改須取得法院的認可或是唱片公司的同意。
「達文希密碼」的著作權爭議「聖血及聖杯」作者邁可貝奇及理查李伊於今年二月在英國高等法院對暢銷書「達文西密碼」出版商「藍燈書屋」(Random House)提出訴訟,主張「達」書作者丹布朗抄襲「聖」書中的若干想法(ideas)及主題(themes),包括其研究多年的「耶穌血脈理論」,因而侵害其著作權。 被告律師對於原告所提之控訴表示,「聖」書中的若干創意在本質上具備高度普遍化特質,無法成為著作權保護之客體。而原告律師亦強調,本案爭論重點並不在於「忽視他人創意成果」或是「獨佔想法或歷史事件」,主要是證明「達」書作者大量依賴「聖」書內容而完成「達」書。原告希望取得禁止令禁止「達」書使用「聖」書資料,此舉將迫使原訂今年5月中旬由湯姆漢克主演之原著電影延後上映。 著作權法之核心精神是保護「表達」,而非「想法」。對於同一題材之文學作品要區分何者屬表達,何者屬想法,並非易事。本案的出現僅是再次印證理論與實務之差距,而本案之後續發展亦值得繼續關注。
日本《航空法》修正後之無人機最新政策發展