數位內容通路商收購相關支援技術

      數位內容於廣播應用上銷售與管理解決方案的領導廠商拜斯法爾 (Pathfire, Inc)於日前收購了相關的支援技術 Digital Media Gateway (DMG) Server Connect for Programming,並將此一技術應用於十二個廣播站上。 在技術整合之後, 拜斯法爾的程式聯結伺服器,將得以直接將 DMG伺服器之數位內容傳輸至廣播站的空中播送伺服器,並保留原先的數位格式。


  隨著廣播電視的數位化,數位內容、廣播電視與相關數位技術的整合,應是未來發展的趨勢。相關技術的整合與相關企業的轉投資與併購,應會持續增加。政府在擬定政策與相關法令之時,宜事先掌握相關趨勢,因勢利導,以達事半功倍之效。

相關連結
※ 數位內容通路商收購相關支援技術, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=694&no=67&tp=1 (最後瀏覽日:2026/01/19)
引註此篇文章
你可能還會想看
歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應

  歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。   個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。   此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。

日本著作權法修正促進人工智慧開發

  2018年5月18日,於第196次參議院會議中通過「著作權法」修正案,並於5月25日公布,預計於2019年1月1日施行。本次修正是為因應數位網路技術的發展,對需要著作權人同意的行為範圍進行檢視。其中第47條之7修正、及新增之第30條之4與第47條之5與人工智慧發展有重大相關。   日本著作權法於2009年的修正中,增加第47條之7規定,原本可能構成著作權侵害之資料分析、機器學習行為(未經原作者同意複製、改作),只要在必要限度內,不分是否有營利,皆無須權利人同意。然而本條在使用上因為未涵蓋成果物的讓與行為,也就是如果公開販售學習完成的資料集或是人工智慧模型,甚至於同一平台共享資料集都可以構成侵害。有鑑於此,才在本次修法中修正相關條文。   本次修正中,增加第30條之4規範於必要限度內可利用他人著作物的行為,其中在同條第二款中認可第47條之5第1項第2款之行為,也就是「利用電子計算機的情報解析及提供其結果」,亦可被認為不違反著作權法,因而補上原本第47條之7的漏洞。   惟須注意的是,所謂的必要限度還是有嚴格的比例限制,不能無限制使用。由於目前本次修正還尚未生效,未來對人工智慧發展的應用會產生什麼樣的實際影響,值得繼續觀察。

歐盟2020年人工智慧白皮書

  歐盟執委會於2020年2月19日發布「人工智慧白皮書」(White Paper on Artificial Intelligence: a European approach to excellence and trust),以打造卓越且可信賴的人工智慧為目標。歐盟認為在推動數位轉型過程中的一切努力,均不應脫離歐盟以人為本的最高價值,包含:開放(open)、公平(fair)、多元(diverse)、民主(democratic)與信任(confident),因此在人工智慧的發展上,除了追求技術的持續精進與卓越外,打造可信賴的人工智慧亦是歐盟所重視的價值。   歐盟執委會於人工智慧白皮書中分別就如何追求「卓越」與「可信賴」兩大目標,提出具體的措施與建議。在促進人工智慧卓越方面,執委會建議的措施包含:建立人工智慧與機器人領域的公私協力;強化人工智慧研究中心的發展與聯繫;每個成員國內應至少有一個以人工智慧為主題的數位創新中心;歐盟執委會與歐洲投資基金(European Investment Fund)將率先在2020年第1季為人工智慧開發與使用提供1億歐元融資;運用人工智慧提高政府採購流程效率;支持政府採購人工智慧系統等。上述各項措施將與歐盟「展望歐洲」(Horizon Europe)科研計畫密切結合。   而在建立對人工智慧的信賴方面,執委會建議的措施則包含:建立有效控制人工智慧創新風險但不箝制創新的法規;具高風險的人工智慧系統應透明化、可追溯且可控制;政府對人工智慧系統的監管程度應不低於對醫美產品、汽車或玩具;應確保所使用的資料不帶有偏見;廣泛探討遠端生物辨識技術的合理運用等。歐盟執委會將持續徵集對人工智慧白皮書的公眾意見,並據以在2020年底前提出成員國協力計畫(Coordinated Plan)之建議。

日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】

  日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。   該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素: 對研發成果的貢獻程度。 智財權歸屬於大學的處理方法。 是否有必要通過大學發布研究成果。 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 雙方是否同意智財權共有。   此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件: 不限制大學後續研究的可能性。 所有的智財權都要適當的努力使其商業化。 研究成果需在約定的期間內進行學術發表。   日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。

TOP