美國管理不實施專利主體立法進程與趨勢
科技法律研究所
法律研究員 劉憶成
2015年07月30日
壹、不實施專利主體概述
「不實施專利主體(non-practicing entity, 以下簡稱NPE)」乃是一個中性的名詞,NPE一方面可促進專利技術交易市場的活絡,但另一方面也有NPE不以活絡專利技術交易市場為目的,而是透過以低價購買專利成為專利權人,並據以行使《專利法》上之權利,投機性地靜待商品製造者投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張,對於後者有人將其稱之為「Patent Troll」(中文有譯為「專利巨人」、「專利蟑螂」、「專利流氓」、「專利地痞」或「專利恐怖份子」等等,以下統譯為「專利地痞」)。
專利地痞藉由有問題的專利申請範圍恐嚇企業並勒索和解金的案例激增,對美國造成數十億美元的經濟耗損並且破壞了美國的創新,其橫行的技術領域以智慧型手機及其他消費性電子產品為最。根據加州舊金山的專利顧問公司RPX所作的研究,至2014年,美國專利侵權訴訟中有63%的訴訟是由專利地痞所提起,而受害公司花費在法律費用、和解或判決的費用約122億美元。因此如何降低專利訴訟的成本、降低無效專利的數量及提升專利權的授予品質都成為美國的重要政策目標。
貳、美國政府的對應措施
為了解決專利地痞所帶來的問題,美國早在2011年由國會通過《萊希-史密斯美國發明法(Leahy-Smith America Invents Act of 2011),以下簡稱AIA》,該法並於2012年生效。其目的在於透過改善美國專利制度,包括為發明人提供專利處理程序的快速通道、採取重要步驟來降低專利案件的積壓及提升美國人在國外保護其智慧財產權的能力等等。
不過,專利地痞所帶來的挑戰依舊,特別是專利地痞提出侵權訴訟之成本與被控侵權公司為了防禦所付出的成本之間不具對稱性,這使得專利地痞有機會以和解取得利益。因此,2013年美國政府曾向其國會提出立法七項建議,也祭出五項行政措施,使專利制度更具有透明性,並為發明者創造一個公平競爭的環境。
參、美國國會積極立法
對此,美國開始了多項進一步管理專利地痞的立法進程。以下將就2015年美國國會針對專利地痞所提出之法案進行介紹。
(一)新版創新法案(the Innovation Act)
本法案2015年2月5日送入美國眾議院審議,其法案接續2011年的「美國發明法案」(the American Invents Act,AIA),企圖進一步解決專利地痞濫用訴訟之難題,其中重要條款包括:由敗訴方負擔律師費、提高專利訴訟的成案基準(pleading standard)、專利權人揭示制度、客戶中止訴訟程序等等。
(二)警告函透明法案(Demand Letter Transparency Act of 2015)
美國眾院於2015年4月20日提出《警告函透明法案》,該法案首先要求美國專利與商標局(USPTO)建立一個公開可查詢的警告函資料庫,然後要求大量寄發侵害警告函的行為人必須透過這個資料庫對USPTO揭露其行動,同時侵害警告函的內容也必須記載這些資訊,使收信人能夠公平得知。
(三)保護美國人才與企業法案
美國參議院於2015年4月底針對抗衡美國patent troll提出法案,該法案名為《the Protecting American Talent and Entrepreneurship (PATENT) Act》。希望能制止美國近年來濫用美國專利制度,所造成許多不必要之專利訴訟案件等情形。美國眾議院於2015年5月底又針對PATENT Act法案作出修正,希望在打擊專利地痞的同時,又不至於而造成專利權人濫用AIA的保護。
肆、結論
為了解決專利地痞的問題,美國政府分別從立法及行政措施著手,依據美國歐巴馬總統的建議,不論是美國政府或是美國國會,刻正積極雙管齊下透過各項行政手段,例如修改專利相關規則,或者透過國會立法方式,對專利地痞進行規制。其實,專利地痞不僅橫行於美國,其亦在許多國家從事相關活動,故美國相關行政措施與立法,勢必成為各國在解決專利地痞問題時的重要參考依據,因此美國各項法案的後續發展,都值得吾人繼續關注。
本文為「經濟部產業技術司科技專案成果」
日本特許廳於1月14日發布從4月1日起中小、新創與小型企業等提出國內專利申請場合的審查請求費用與專利費用,及提出國際專利申請場合的檢索、寄送與預備審查等手續費用將降為原先的三分之一。減輕的依據則是去年秋天在臨時國會通過的競業競爭力強化法中所規定之專利費用等的減輕措施。 具體來說,減輕措施的對象包括符合下列四類資格之對象: 1.小規模之個人事業主(員工20人以下;貿易業或服務業在5人以下) 2.事業開始後未滿10年之個人事業主 3.小規模之企業法人(員工20人以下;貿易業或服務業在5人以下) 4.設立後未滿10年且資本額在3億日圓以下之法人 第三、第四類資格排除大企業之子公司等存在控制公司之情況。 減輕的內容包括國內申請與國外申請。國內申請的場合,審查請求費用降為三分之一、專利年費(1~10年份)降為三分之一。國際申請的場合(限以日語所為之國際專利申請),檢索手續、寄送續費用降為三分之一,而預備審查的費用也減輕為三分之一。 日本特許廳此項措施適用於今年四月以後所提出之審查請求等情況,為有效期間至平成30年(西元2018)截止的時限措施。此外,雖然向來即有對於中小、創新與小型企業的專利費用等的減輕措施,但相較於過去的優惠,此次更擴大了減輕的幅度與對象。
英國提出產品安全及電信基礎設施法案英國政府於2021年11月24日,提出產品安全及電信基礎設施法案(Product Security and Telecommunications Infrastructure Bill,PSTI法案),要求物聯網供應商、提供網際網路連線服務之公司或其他數位科技產品之製造商、進口商,及經銷商符合新網路安全標準,並對未遵守規範者處以巨額罰款。 PSTI法案之通過將保護消費者免受資安攻擊,並使政府得以引入更加嚴格的安全標準。該法案之內容包含,禁止數位科技產品之業者使用單一且通用之預設密碼,產品之預設密碼都必須有所不同;供應商應具備漏洞揭露政策,並應向客戶公開公司正採取何種防禦作為,處理該安全漏洞;應公開相關聯繫資訊或建立聯繫平台,使安全研究人員或其他人發現產品缺陷及錯誤時,方便與其聯繫;另外,針對不符合要求之產品或服務,政府亦將有權阻止其於英國境內銷售。 在電信基礎設施改革方面,將促進營運商與電信託管設備之土地所有權人進行更快速有效之談判,減少相關冗長的法律爭訟事件,例如,要求電信營運商透過訴訟外紛爭解決機制(Alternative Dispute Resolution,ADR)解決紛爭,無須訴諸法院。亦加快續約之談判流程,讓根據舊有協議安裝基礎設施之營運商,得以按照類似條款進行續約,英國政府希望透過這些措施使95%國土擁有4G網路覆蓋,至2027年大多數人口能使用5G網路。 PSTI法案生效後,英國政府將指定監管機構,其有權限針對違反規範之企業處以最高1000萬英鎊罰鍰,或以其在全球之營業總額的4%作為罰款。
簡介美國《營業秘密案件管理的司法指引》2023年7月13日,美國聯邦司法中心(Federal Judicial Center)發布《營業秘密案件管理的司法指引》(Trade Secret Case Management Judicial Guide)。該指引是由美國聯邦司法中心與Berkeley大學合作出版,旨在提供處理聯邦營業秘密訴訟的法官參考,並為訴訟當事人提供營業秘密案件各階段的注意事項。其中特別指出識別營業秘密及證據開示在訴訟中的重要性。 1.在識別營業秘密的部分 《營業秘密案件管理的司法指引》指出在訴訟中,識別應達到「足以與已公開的資訊進行比較」的程度。而識別程度應具備以下兩個要件,包括: (1)使被告了解原告所主張之營業秘密範圍; (2)使被告能確定證據開示項目與本案所涉及之營業秘密間的關聯性。 據此,若原告僅識別其所主張之營業秘密的類別不足以識別其營業秘密。為達到《營業秘密案件管理的司法指南》所要求之識別程度,企業應盤點其擁有的營業秘密並留存產出紀錄,以利後續訴訟中能具體識別其營業秘密。 2.在證據開示的部分 《營業秘密案件管理的司法指引》指出證據開示的範圍會受到不同因素影響,比如各類型的特殊紀錄、個人隱私權是否受到保護等。為了能在證據開示階段取得優勢,企業應與員工簽署協議,明確約定其於機密資訊有外洩之虞時,有權對員工之個人設備等進行調查。 由上述內容可以發現,若要在美國營業秘密案件中取得優勢,建議企業採取識別所擁有的營業秘密、保存產出紀錄、與員工簽署相關協議等措施。關於前述營業秘密管理措施之重要內容,企業可以參考資策會科法所創意智財中心發布的「營業秘密保護管理規範」,並進一步了解該如何管理,以降低自身營業秘密外洩之風險,並提升其競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。