美國化學營業秘密哪些必須揭露?哪些可以保密?

  為因應有害化學物質所產生之公安事件,2015年6月8號美國職業安全管理局(Occupational Safety and Health Administration,簡稱(OSHA))發佈一項措施,針對具危險性化學物質之運輸過程,規範處理程序,包括製造商須提供物質安全數據表,以及可能具有風險的有害物質說明書等。

  為此,OSHA考量到此將影響化學製造商營業秘密保護,遂提出判斷準則,以釐清對於化學製造商而言,何種情況將構成營業秘密,包括:(1)在一定的程度內該資訊是否已被外界所知;(2)在一定程度內,該資訊對於員工或其他參與者是否已知;(3)是否有一定程度對於該資訊內容進行保護措施;(4)該資訊對於競爭對手是否有價值;(5)是否投入大量時間和金錢開發該資訊;(6)該資訊對企業而言是否得被他人簡易取得與複製。

  進而在符合上述營業祕密要件時,企業即無須對一般員工(非研發工程師)揭露化學公式等內容,其中包括一般操作人員或者運輸人員等。然而考量到此等人員接觸化學物質情況頻繁,倘若操作人員或者運輸人員工作過程中,因有害但屬營業祕密之化學物質造成意外傷害,為平衡公眾安全與營業秘密之保障,OSHA要求化學製造商必須立即提供醫護人員有害化學物質方程式等內容,但可要求醫護人員簽訂保密協議,藉此兼顧公安與營業秘密之保障。

相關連結
※ 美國化學營業秘密哪些必須揭露?哪些可以保密?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6956&no=0&tp=1 (最後瀏覽日:2025/11/24)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

韓國2月通過《加強保護國家高科技戰略產業競爭力特別措施法(半導體特別法)》

韓國2月通過《加強保護國家高科技戰略產業競爭力特別措施法(半導體特別法)》 資訊工業策進會科技法律研究所 2022年3月23日   韓國政府意識到在高科技產業競爭環境中培育知識人才,以及保護國家戰略產業發展的重要性。2019年修訂《防止產業技術外流及產業技術保護法》(下稱產業技術保護法),針對國家核心技術外流及侵害行為加以重罰外;復於2021年12月提出《國際霸權技術競爭下之科技保護策略》(下稱韓國科技保護策略),並於2022年2月3日通過《加強保護國家高科技戰略產業競爭力特別措施法》[1],於同年8月4日生效。分別說明如下: 壹、韓國高科技保護機制發展趨勢   韓國核心科技保護法制體系的特色,是在《防止不當競爭及營業秘密保護法》禁止竊密及《對外貿易法》出口管制之外,訂定了保護產業技術之專法《產業技術保護法》,並以韓國科技保護策略,宣告政府科技保護策略整體方針。 一、產業技術保護法 (一)立法目的   韓國於2006年10月27日制定《產業技術保護法》,該法第1條載明該法立法目的為:「防止工業技術的過度洩露和保護工業技術,以加強韓國工業的競爭力,促進國家安全和國民經濟的發展。」該法規範之國家核心技術係指在國內外市場中,具有較高經濟價值或高度產業成長潛力之技術,此類技術若外洩到國外,對於國家的安全保障及國民經濟發展,將造成重大惡劣影響之虞。 (二)產業技術保護委員會選定國家核心技術防止外流   《產業技術保護法》規定由產業通商資源部部長擔任產業技術保護委員會的委員長,成員包括財政部、教育部、科學部、外交部、法務部、國防部、農林部、保健部、環境部、交通部、海洋部、中小事業部次長、智慧局局長以及民間代表。   各部會由主管業務之產業技術範圍中選定國家核心技術名單,再由產業通商資源部部長及各主管部會部長選定國家核心技術,最後經由產業技術保護委員會經法定程序予以指定、變更、撤銷。該委員會主要根據該產業技術對國家安全保障及國民經濟衍生效益、國內外市占率,以及產業影響力,來進行考量國家核心技術清單,在每年2月底檢討前一年度執行情形,並於10月底更新下一年度國家核心技術及其保護計畫,決定國家核心技術清單。2021年1月產業技術保護委員會審議通過之「國家核心技術指定項目公告」修訂版,指定之國家核心技術包括半導體、顯示器、資通訊、電機電子、機械、機器人、鋼鐵、造船、交通、航太、核能、生命科學等12大領域共71項。 (三)防止國家核心技術外流加重罰則   《產業技術保護法》先後經歷8次修法強化保護力道,最新一次修法是在2019年8月,修法內容包括加強外資管控,凡是國外併購、合併,無論技術是自行開發或政府資助,皆須向政府申報,如果政府認為有影響國安之虞,可下令暫停或禁止;另外是加強技術保護責任,要求國家核心技術之持有及管理者採取必要的保護措施;修法前對於技術外流之懲罰規定僅設有上限(15年有期徒刑及15億韓元),故增訂技術外流至海外之最低罰則為3年以上有期徒刑及15億韓元罰金。 二、韓國科技保護策略   韓國政府2021年12月宣布之科技保護策略,旨在制定各部會科技保護策略方針,以避免韓國核心技術不法外流。該保護策略宣告: (一)將定期檢視國家核心技術之指定、變更與撤銷。 (二)針對國家核心技術清單制定一定執行期間(如5-10年,視技術項目而定)。 (三)規劃於2023年修正《產業技術保護法》,針對外資的認定,增訂間接持股、雙重國籍等情事。 (四)以過去出口管制之企業、投資審查之對象為基礎,將可能持有國家核心技術之企業登錄、加強管制,並建立國家核心技術專家資料庫,以持續監控其出入境。 (五)規劃跨部會合作,包括應用智慧財產局的專利資料庫,認定擁有國家核心技術之相關人員或機構。 貳、《加強保護國家高科技戰略產業競爭力特別措施法》   《加強保護國家高科技戰略產業競爭力特別措施法》(下稱半導體特別法),在《產業技術保護法》之「國家核心技術」外,額外定義「國家高科技戰略技術」,除出口、併購應依現行《產業技術保護法》事先取得產業通商資源部許可外。對於不法侵害國家高科技戰略技術,訂定更嚴厲的罰則;同時針對相關產業提供系統性支援措施。 一、成立由韓國總理主導的「國家高科技戰略產業委員會」,制定5年戰略產業培育及保護的基本計畫。 委員會組成:提高管理層級,由總理為主席,成員包括部會首長、產學研專家,委員人數不超過20名,並由產業通商資源部擔任秘書處。 各領域專門委員會:為協助委員會審查和事先審議,各戰略產業領域得設立專門委員會,每領域委員不超過10名,各專門委員會之主席由「國家高科技戰略產業委員會」主席根據部會首長推薦任命之。 二、「國家高科技戰略技術」由「國家高科技戰略產業委員會」指定,定義為: 影響國家及經濟安全重大者,例如影響供應鏈穩定之半導體技術。 具成長潛力、技術困難度及產業重要性者。 對於相關產業具重大漣漪效益者。 「國家高科技戰略產業」則指研究、開發、商業化國家高科技戰略技術,或以國家高科技戰略技術為基礎,商業化生產產品或服務的產業。 三、加重不法侵害國家高科技戰略技術的罰則:意圖在境外使用或使技術在外國使用,而不法侵害國家高科技戰略技術者,處15年以下有期徒刑、15億韓元以下罰金;未取得許可出口、投資併購而不法侵害國家高科技戰略技術者,處15年以下有期徒刑、15億韓元以下罰金。 四、中央及地方政府應制定培育、保護國家高科技戰略產業必要的政策。有關國家高科技戰略技術的保護,除半導體特別法有規定外,依《產業技術保護法》之規定。< 五、為支持國家高科技戰略產業,提供加速辦理許可、迅速處理環安或職安民事投訴、投入政府預算、減免稅金、培育專業人才等方案。 六、為穩定國家高科技戰略產業供應鏈,政府因自然災害或國際貿易形勢導致相關技術供需穩定有疑慮時,經營者、進出口、運輸、倉儲業者或國營事業,應依據總統令,以六個月為期限,於期間內辦理生產計畫、國內優惠供應方案或設施擴建等事項。 參、代結論:韓國本次《半導體特別法》評析   韓國《半導體特別法》在認定國家高科技戰略技術時,將民間企業或專家的意見,納入國家高科技戰略技術認定與管制機制的決策程序中,綜合考量該技術對國家及經濟安全、技術成長潛力等影響,在最小必要範圍內選定之。另,《半導體特別法》亦特別提出國家高科技戰略產業發展的優惠政策方案,讓該些產業雖因其重要性須受嚴厲管制,但同時也得到政府加速辦理許可、減免稅金等支持。就韓國本次修法,在其認定重要技術的評估方法,以及提供對應配套機制上,值得做為我國未來在保護重要高科技產業做法上的參考。 [1] Cabinet passes National High-Tech Strategic Industries Special Act, Jan. 25, 2022, https://english.motie.go.kr/en/pc/pressreleases/bbs/bbsView.do?bbs_cd_n=2&bbs_seq_n=911 (last visited 2022/03/20)

日本監理沙盒制度推動趨勢—簡介生產性向上特別措施法草案與產業競爭力強化法修法內容

  我國自2017年12月通過《金融科技發展與創新實驗條例》建立金融監理沙盒制度後,各界時有呼籲其他非金融領域亦有沙盒制度之需要。觀察國際上目前於金融產業以外採取類似沙盒制度之國家,當以日本為代表,且日本相關制度亦為我國《中小企業發展條例》修法時之參考對象。   本文針對日本近期提出之《生產性向上特別措施法》(草案)以及日本《產業競爭力強化法》新近之修法等兩項日本近來有關沙盒制度之修法為觀察對象,針對其整體立(修)法背景、《產業競爭力強化法》中灰色地帶解消制度及企業實證特例制度修正重點以及《生產性向上特別措施法》(草案)中「專案型沙盒」之制度內涵進行整理,並比較企業實證特例制度及專案刑沙盒兩者制度上之異同。   本文最後發現,日本之沙盒制度設計上確實符合其減少事前管制、強調事後確認與評估、建立風險控管制度、課與主管機關提供資訊與建議之義務以及強化業者與主管機關聯繫等目標。同時,本文認為日本沙盒制度中有兩項制度特色值得我國關注及參考。第一,日本成立了包含外部專家的「評價委員會」,協助政府單位了解創新事業之內容及法規制度之觀察。第二,日本未來將提高實證制度之協調層級,在日本內閣府下設立單一窗口協助申請者決定其可適用之實證制度。

美國醫療保險將為醫院提供鐮狀細胞疾病基因療法的創新支付鼓勵措施

美國醫療保險和醫療補助服務中心(Centers for Medicare and Medicaid Services, CMS)於2024年4月10日發布了2025財年(Fiscal year 2025, Oct. 1, 2024, to Sept. 30, 2025)醫療保險醫院住院預期支付系統(Inpatient Prospective Payment System, IPPS)規則草案(proposed rule)。 考量到細胞療法費用高、可近用性低,2025財年規則草案便包含為醫院提供治療鐮狀細胞疾病(Sickle Cell Disease, SCD)基因療法,其新技術附加支付(New Technology Add-on Payment, NTAP)附加百分比從原本的65%提高到75%的創新支付措施。 NTAP方案是2001年由CMS推出,旨在激勵醫院採用新技術和新療法。NTAP規定新的醫療服務或技術必須滿足以下3個標準,才有資格獲得附加支付: 1.新穎性:醫療服務或技術必須是新的。一旦此治療已經被認為不是新技術,附加支付就會結束。 2.費用過高:醫院在使用新技術時,可能會產生成本超出標準的住院病患支付限額,該技術在現有醫療保險嚴重程度診斷相關群組(Medicare Severity Diagnosis-Related Groups, MS-DRG)系統下不足以支付。 3.實質的臨床改善:與目前可用的治療方法相比,使用該技術其臨床資料必須要顯示確實能改善特定病人群體的臨床結果。 NTAP透過提供經濟激勵,支持醫療機構在初期階段採用新技術,從而促進醫療創新並改善患者治療效果。SCD為一種遺傳性疾病,對美國黑人影響嚴重,且治療選擇有限。因此該創新支付鼓勵措施將使醫院可以獲得更多的資金來執行昂貴的SCD基因療法,進一步促進SCD病人獲得最新的治療,且能減少SCD長期醫療照護的相關成本。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)

TOP