共享經濟(Sharing-economy)為近來很夯的議題,其概念係藉由網路平台分享自有資產、資源、時間及技能及其他有用的事物,透過資源分享能更有效利用或者獲得收入。共享經濟不僅能夠促進經濟成長、鼓勵創業,同時也促進資產有效再利用,許多創新服務成功案例,例如Uber、Lyft、Airbnb等因此產生,然而,這類型之創新商業模式推展至世界其他各國發展時,卻遭遇到法規範的差異,與各國政府監督與管理出發點的不同,對各國政府與創新商業模式皆成為未來的挑戰。
舉例來說,目前Uber公司在法國、西班牙和德國等國禁止其提供服務,由於德國政府認為Uber未事先依法律規定辦理司機與營業車輛登記,故禁止Uber於德國境內服務;而西班牙政府認為Uber公司未取得經營執照,亦禁止其於西班牙提供服務。然而Uber公司認為,上述國家對於公司的發展已產生限制競爭與不公平的對待,進而向歐盟執委會(European Commission)提出申訴。
依歐盟條約(The Treaty on the Functioning of the EU, TFEU)規定,歐盟會員國各該內國法之制定原則上不可抵觸歐盟競爭法(EU competition laws),是以,各該歐盟會員國必須遵守歐盟競爭法訂立至少符合歐盟競爭法的相關規範。因此,若認為歐盟會員國的規範與實務操作有悖於歐盟條約所制定之公平競爭規則時,可向歐盟執委會提出申訴,該委員會如發現確實有違背公平競爭規則時,可要求該歐盟會員國修訂其國家的監管制度。
對此,歐盟、各該會員國之監管部門、市場競爭當局試圖尋找解決問題的平衡點,並在適當的監管與促進創新與競爭的環境下,俾利共享經濟於各國的推動與發展。
澳洲及紐西蘭公路監理機關聯合會(Austroads)於2020年3月18日發布「輔助駕駛及自動駕駛車輛之駕駛人教育及訓練報告(Education and Training for Drivers of Assisted and Automated Vehicles)」,該報告目的在於研究有哪些技巧、知識與行為,為目前與未來人們使用具有輔助或自駕功能車輛所需具備的;並檢視註冊與發照之相關機關應擔任何種角色,以確保駕照申請人具有足夠能力以使用相關科技。報告中所關注之輔助與自駕車輛,為具有SAE自動駕駛層級第0至第3級之輕型或重型自駕車輛;目前澳洲道路規範並未禁止第3級之自駕車使用,但駕駛人仍應保持對車輛之控制且不得同時進行其他行為。 報告認為目前之駕駛執照發照架構尚不需改變,但註冊與發照機構仍可於輔助與自動駕駛車輛的學習與評估中扮演一些角色,包含: 鼓勵經銷商、製造商與相關利益團體進行有關如何安全運用相關系統,同時避免過度依賴之教育與訓練。 支持將自駕車技術相關之特定重要資訊整合進所有層級之教育與訓練中,但不使用強制性之評估程序進行能力評估。 應關注如何於澳洲設計規範(Australian Design Rules, ADRs)或澳洲新車評估計畫(Australasian New Car Assessment Program, ANCAP)中規範特定車輛之安全公眾教育、整合重要資訊於既有的知識與技術訓練,以及建立強制之學習計畫。 未來澳洲及紐西蘭公路監理機關聯合會將繼續發展相關計畫以實施本報告中之相關建議,以使教育訓練系統更加完善。
美國聯邦最高法院判決維持Brulotte原則2015年6月美國聯邦最高法院大法官以6比3的同意比例判決維持該法院於1964年所確立之Brulotte原則,即專利失效後禁止要求償付授權金之原則。聯邦最高法院重新檢討Brulotte原則之爭議係起源於Kimble et al. v. Marvel Enterprises Inc.(case num. 13-720)一案。該案中涉及到現實下專利權利人於面對財團時,是否能於專利權有效期間採取手段充分保護專利權之問題,故是否有必要放寬專利權於失效後,專利權人仍得以專利授權契約要求專利被授權人償付授權金。又本案原告知專利發明人Kimble主張放寬Brulotte原則亦有亦於刺激競爭,促進研發創新。 然而,主撰判決本文之美國卡根大法官(Justice Kagan)及贊同維持Brulotte原則之大法官認為,Brulotte原則屬於聯邦最高法院遵照執行之決議事項(stare decisis),必須具有超級特別的理由(superspecial justification)才足以立論推翻該原則。但大法官認為並無有該類理由,並且強調縱然放寬Brulotte原則在學理上證實有助於市場競爭,但這也並非聯邦最高法院在司法權限所應審查或判斷之事項,而應是美國國會於智財政策之取捨。 反對維持Brulotte原則之阿利托大法官(Justice Alito)、羅伯特首席大法官(Chief Justice Roberts)及湯瑪斯大法官(Justice Thomas)提出不同意見書。反對意見認為專利失效及失去任何專有權利,所以涉及授權金之唯一問題即在於最佳契約設計(optimal contract design)。Brulotte原則干預了各方協議授權內容時,可以反映專利真實價值的方式,破壞契約期望(contractual expectation)。 本案作成判決後,各專利事務所及專利律師普遍贊同聯邦法院維持Brulotte原則,主要係基於該原則可以使用來償付授權金之資金轉為用於他處,有助於資金流通,而非用於已失效之專利。
日本修正產業競爭力強化法,協助業界因應COVID-19後之新日常日本內閣於2021年2月5日通過產業競爭力強化法修正案(下稱本法),並於同年6月經國會通過。本次修正目的,為因應COVID-19所帶來影響與「新日常」(新たな日常,意指日本與各國因應COVID-19疫情影響,調整並重新建構生活、工作等基本社會活動方式的框架,追求安心、安全生活的同時擴大經濟活動),推動企業的長期化改革。對此,本法修正視為後COVID-19時代首要目標者,具體包含綠色社會(グリーン社会)、數位化(デジタル化)、以新日常為前提進行產業轉型等。 基此,此次本法的修正重點如下: (1)邁向綠色社會:企業提出與實現「碳中和」(カーボンニュートラル)相關之計畫,經主管機關認可後,該企業導入具零碳排(脱炭素化)效果產品之生產設備或生產程序、或對之進行投資,最多可免除10%的稅額,或得在提列折舊費用時,最高額外計提導入價格50%的特別折舊(特別償却)費用;企業為減少碳排放而向金融機構融資,如其能達成所設定的計畫期中目標,最多可獲0.2%的利息補助。 (2)因應數位化:企業如提出全公司的數位化商業模型改革計畫,並經主管機關認可,該企業針對應用雲端技術所進行投資,最多可免除5%稅額、或額外提列30%之特別折舊費用。 (3)企業改制以適應新日常:企業如提出應對新日常之事業再建構計畫,獲主管機關認定符合其事業類型之數位化指針(由主管機關擬定頒布)的要求,該企業於2020年與2021年度的經營赤字,直至轉為獲益之前(最長為5年),其應課稅所得的免除額最高提升為100%。 (4)允許上市公司舉行純虛擬(バーチャルオンリー)形式的股東會:創設公司法(会社法)以外之特別法規定,允許上市公司得例外以線上、無法明確定義召開地點的形式,舉行股東大會。 (5)支援新創事業:創設民間對於大型新創事業融資的債務保證制度,同時放寬國內證券投資基金對海外新創事業投資的50%上限規定。 (6)企業再生(事業再生)措施彈性化:因應COVID-19疫情對業界造成的打擊,原企業再生須透過訴外紛爭解決機制進行者,該個案得在5分之3的債權人同意減免金融債權額時,轉由法定之簡易再生程序辦理,加速企業提出的再生計畫獲得認可。 (7)將監理沙盒(規制のサンドボックス)轉型為常態型制度:監理沙盒制度之原主管法規,為生產性提升特別措施法(生産性向上特別措置法)。該制度要旨為企業得向主管機關提出計畫申請,針對個別議題或領域進行法規豁免之創新實驗;企業執行上述計畫所獲得之報告或資料,應提供予主管機關,作為檢討修訂相關法規之參考。該法因明定自施行日起三年內廢止之落日條款,預定於2021年6月廢止。因之,本次產業競爭力強化法修正時,配合納入監理沙盒制度的相關條文,而實質將其改為永久性實施之制度。
美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。 《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括: 1.對決策過程進行描述,比較分析其利益、需求與預期用途; 2.識別並描述與利害關係人之協商及其建議; 3.對隱私風險和加強措施,進行持續性測試與評估; 4.記錄方法、指標、合適資料集以及成功執行之條件; 5.對執行測試和部署條件,進行持續性測試與評估(含不同群體); 6.對代理商提供風險和實踐方式之支援與培訓; 7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款; 8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄; 9.自透明度的角度評估消費者之權利; 10.以結構化方式識別可能的不利影響,並評估緩解策略; 11.描述開發、測試和部署過程之紀錄; 12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源; 13.無法遵守上述任一項要求者,應附理由說明之; 14.執行並記錄其他FTC 認為合適的研究和評估。 當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。