美國Uber被訴利用軟體應用程式追蹤用戶位置資訊

  美國電子隱私資訊中心(The Electronic Privacy Information Center, EPIC)向聯邦貿易委員會(Federal Trade Commission, FTC)檢舉Uber利用手機軟體"God view"追蹤並蒐集軟體用戶(乘客)位置資訊,並利用該資訊發送廣告給乘客。EPIC主張該作法為違法、詐欺的商業模式。

  議員Al Franken對該軟體用戶服務條款也提出質疑,因該服務條款載明即使用戶終止使用,該軟體仍將繼續蒐集用戶的位置資訊,並可無限期使用用戶的個人資料。雖然Uber後續對該服務條款進行增修,但仍對外主張保有最後解釋的權利。

  EPIC認為目前依「駕駛隱私法」(Driver's Privacy Act )的規定,除具要求提供車輛資料的法源依據,或個人同意並被告知資料將如何使用之情形,才可以蒐集該車輛資料以維護駕駛隱私,否則不得蒐集與該車輛的任何記錄與資料。然而,EPIC亦認為應立法禁止使用軟體追蹤乘客與蒐集其資料。EPIC同時也建議應制定法規限制 Google、Facebook、Whatsapp、Snapchat等公司追蹤及蒐集顧客資料。對此,Facebook僅表示會確保用戶的位置資訊不被濫用,而Google則拒絕對此發表評論。

  另外,EPIC認為Uber蒐集用戶位置資訊,並隨著時間的推移來追蹤用戶(乘客)動向資料並進行廣告行銷,對用戶的隱私權保護並不完整,且用戶資料也有被盜取之可能,因此,EPIC希望FTC能對Uber"God view"軟體進行調查,希望促成規制用戶(乘客)資料蒐集、處理與利用的商業模式。

相關連結
※ 美國Uber被訴利用軟體應用程式追蹤用戶位置資訊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6958&no=65&tp=1 (最後瀏覽日:2025/07/27)
引註此篇文章
你可能還會想看
美國財政部外國資產控制辦公室更新發布與勒索軟體支付相關之制裁風險諮詢

  美國財政部外國資產控制辦公室(The US Department of the Treasury’s Office of Foreign Assets Control, OFAC)於2021年9月21日更新並發布了與勒索軟體支付相關之制裁風險諮詢公告(Updated Advisory on Potential Sanctions Risks for Facilitating Ransomware Payments)。透過強調惡意網絡活動與支付贖金可能遭受相關制裁之風險,期待企業可以採取相關之主動措施以減輕風險,此類相關之主動措施即緩減風險之因素(mitigating factors)。   該諮詢認為對惡意勒索軟體支付贖金等同於變相鼓勵此種惡意行為,故若企業對勒索軟體支付,或代替受害企業支付贖金,未來則有受到制裁之潛在風險,OFAC將依據無過失責任(strict liability),發動民事處罰(Civil Penalty制度),例如處以民事罰款(Civil Money Penalty)。   OFAC鼓勵企業與金融機構包括涉及金錢存放與贖金支付之機構,應實施合規之風險管理計畫以減少被制裁之風險,例如維護資料的離線備份、制定勒索事件因應計畫、進行網路安全培訓、定期更新防毒軟體,以及啟用身分驗證協議等;並且積極鼓勵受勒索病毒攻擊之受害者應積極聯繫相關政府機構,例如美國國土安全部網路安全暨基礎安全局、聯邦調查局當地辦公室。

歐盟將對微軟反托辣斯法進行聽證

  據報導指出,歐盟競爭委員會(European Union Competition Commission)安排將於六月初針對微軟視窗作業系統搭售的IE瀏覽器的行為進行口頭聽證。此項指控最初是在2007年12月由Opera Software ASA所提出。從今年一月起,數個主要瀏覽器大廠,如:分別開發出Firefox和Chrome的Mozilla及Google,都以第三方的身份參加本案。在數週前,一個包含Adobe、IMB和Oracle等競爭公司的商業團體也以第三方的身份取得參與六月份聽證的管道。當然,微軟亦可趁此機會來回應歐盟對其因搭售IE而扭曲瀏覽器競爭市場的指控。   另據報導指出,微軟在回應期限到期前所遞交的機密文件中有說明,歐盟若對微軟視窗作業系統制定規範,將會使Google在網際網路搜尋市場上,獲得更主導性的地位,這將不利於網際網路搜尋市場的競爭。微軟的主要理由是,Opear和Mozilla已和Google取得協議,Google搜尋引擎將成為該二公司瀏灠器的預設搜尋引擎,Google的瀏覽器Chrome自亦是如此。此外,如果顯示電腦使用者選擇何種瀏覽器的螢幕是由電腦製造商所製造,Google將可直接和這些製造商合作,使Google搜尋引擎成為預設搜尋引擎。微軟同時宣稱,要求將其他公司的瀏覽器附加於微軟視窗作業系統上會侵害其品牌權利,並使其負擔潛在的智慧財產責任。   此案經過聽證後,可能仍需要好幾年才會有結論。

加拿大決定將網路中立規範適用至行動無線網路

  加拿大廣播電視及電信委員會(Canadian Radio-Television and Telecommunications Commission,CRTC)於2009年10月之Telecom Regulatory Policy CRTC 2009-657中,公佈網路流量管理架構(Internet Traffic Management Pratices,ITMPs)之決定,作為管理ISP業者進行差別待遇之依據。該管理架構是加拿大維護網路中立性原則的實踐。   當時CRTC並未決定該架構是否一併適用於行動無線網路,直至2010年7月CRTC發布Telecom Decision CRTC 2010-445,決定將該規則一併適用於行動無線網路,以解決潛在的差別待遇行為發生於行動無線資料服務。   根據2009年之管理架構,CRTC宣示了四項管理原則: 1.透明度(Transparency) ISP必須透明揭露他們所使用的ITMPs,使消費者能根據這些資訊決定服務的購買與使用。例如經濟條件的透明,使消費者能夠有符合其支付意願之選擇,使市場機制能夠正常運作。 2.創新(Innovation) 解決網路壅塞最基本的方式是透過對網路之投資,也仍是最主要的解決方案。但依靠投資並不能解決所有的問題,CRTC認為,ISP業者之ITMPs在某些時候,仍需要適當的管理措施介入。業者之ITMPs應針對明確的需求而設計,不可過度。 3.明確(Clarity) ISP業者必須確保他們所使用的ITMPs不會有不合理的歧視,也不會有不合理的優惠。CRTC所建立之ITMP的管理架構,提供一個清晰和結構化的方法,來評估既有與未來的ITMPs是否符合加拿大電信法(Telecommunications Act)第27(2)條規範。 4.競爭中立(Competitive neutrality) 對於零售服務,CRTC將採取事後管制原則,即接受消費者投訴後處理之原則,進行管制評估。而在批發服務部份,則較為嚴格。亦即,當ISP在批發服務使用了比零售服務較多的限制性ITMPs時,必須得到CRTC之批准。當ISP將ITMPs用於批發服務時,必須遵守CRTC之管理架構,不得對次級ISP(Secondary ISP)的流量造成顯著和不相稱的影響。   值CRTC並將採取行動以確保因實施ITMPs而收集之個人資訊,不被洩漏與使用至其他目的。   在本項決定公佈之後,代表加拿大提供接取網際網路的ISP,無論使用何種技術,都將適用同樣的ITMPs管理原則。在Google-Verizon於美國遊說網路中立性應不適用於行動無線網路之時,CRTC之決定可做為不同方向之參考。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP