美國先進製造國家計畫辦公室於今年(2015) 6月10日研提現況檢討報告與相關政策資料

  為檢視國內先進製造業復甦與計畫推進之近況,美國先進製造國家計畫辦公室(Advanced Manufacturing National Program Office, AMNPO)於今年(2015) 6月10日研提現況檢討報告與相關政策資料,該項報告主要可歸結「國內產業現況」、「計畫執行成效」與「法制組織」等重要面向 ,茲就該項報告之重點摘要如下:

(一)國內先進製造產業現況檢視:
  報告指出美國目前正喪失在先進產品領域全球領導地位,在進出口貿易呈現嚴重赤字,雖近年致力於先進製造之資源整合與共同研發等措施,然而,觀察基礎科研端到市場端仍存有落差。

(二)先進製造領域已設立45個研發創新中心:
  研發創新中心為產業與學研機構共構之「區域應用性組織」,主要由學術研究聯盟、企業和區域管理機構所組成專注於扶持區域具經濟優勢之新興技術研發,發展在地技術能量。先進製造領域,截至目前為止,已設立45個研發創新中心。除透過研發創新中心之扶持外,另可透過中心之設立選定各該重點關鍵技術發展,間接培育美國各區域之先進製造技術之專業領域。美國境內研究型大學或非營利組織皆得提案申請,而獲選之區域創新研究機構可獲得聯邦政府5至7年資金補助,政府欲透過補助模式,扶持區域新創機構之自主運作與發展。而於七年發展階段後,該機構將形成財政自主,由該機構之行政委員會主導研發資金運用與分配。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國先進製造國家計畫辦公室於今年(2015) 6月10日研提現況檢討報告與相關政策資料, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6977&no=65&tp=1 (最後瀏覽日:2025/09/19)
引註此篇文章
你可能還會想看
紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統

  紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。   於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。   如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。

歐洲民間成立一聯盟,倡議資料主權之重要性

  在今(2021)年1月21日,歐洲數個科技公司、非營利組織與研究機構等民間單位共同發起「現今資料主權」聯盟(Data Sovereignty Now,DSN),宣布將向歐洲各級決策者施加壓力,以確保資料(data)之控制權掌握在生成資料的個人和組織手中。該聯盟認為歐盟執委會應採取決定性之措施,對於在歐洲所生成之資料,應以資料主權原則為基礎,以確保生成資料之個人和組織對其有控制權,以利數位經濟。   而在2020年12月初,澳洲政府首開全球先例提出一新法案,要求Google與Facebook等平台應向澳洲在地媒體支付新聞內容費用,要求雙方進行協商,商討在其平台上顯示之新聞內容所應支付之費用,倘無法達成協議,則由政府之仲裁員決定應支付之金額。此法案引發Google與Facebook高度反彈,不惜以不繼續在澳洲提供服務或停止連結(link)當地媒體之新聞報導作為反擊,要求澳洲政府撤回或修改該法案;然DSN聯盟則認為,Google與Facebook利用其市場主導地位來向澳洲政府施加壓力,正是濫用其資料壟斷權(data monopoly)與壟斷地位之典型例子,為防止科技巨擎將來繼續以此方式勒索政府之唯一方法,即是恢復使用者與平台間之「數位利益平衡」。而Google似有讓步之跡象,根據路透社報導,Google分別已與兩家當地媒體達成協議,將各支付每年3000萬澳幣之費用。該法案是否會如期通過,進而改變或影響此類大型平台與各國政府間資料主權之角力關係,值得持續關注。

美國眾議院提出軟體法案 為醫療APP提供規範方向

  美國眾議院於2013/10/22提出法案(Sensible Oversight for Technology which Advances Regulatory Efficiency Act of 2013,簡稱Software Act,HR3303),擬限制食品藥物管理局 (Food and Drug Administration,FDA)在與健康醫療有關軟體制訂規範的權限。   根據美國聯邦法典第21編第301條以下(21 U.S.C. § 301)規定,FDA對醫療器材擁有法定職權進行規範。FDA近來亦開始嘗試對醫療軟體APP制訂規範,包括附有生物識別裝置(如血壓監視器和照相機)、讓消費者可以蒐集資料、供醫生可遠距離進行部分檢測行為的行動設備。這項法案的支持者以為,FDA此舉將阻礙醫療創新,故擬透過Software Act界定FDA的規管權限。   這項法案主要增加了3個定義:醫療軟體(medical software)、臨床軟體(clinical software)和健康軟體(health software)。醫療軟體仍在FDA的管轄範圍內,但其他2類則否。惟本法案只確立FDA無權對資料蒐集類軟體進行規範,但對此類軟體得使用的範圍、或是否需另授與執照等議題並沒有著墨。提案者以為,後續應由總統和國會應共同努力,對臨床軟體和健康軟體制訂和頒佈立法,建立以風險為基礎的管制架構,降低管制負擔,促進病患安全與醫療創新。   所謂醫療軟體,指涉及改變身體(changing the body)的軟體。包括意圖透過市場銷售、供消費者使用,直接改變人體結構或功能的軟體;或,意圖透過市場銷售、供消費者使用,以提供臨床醫療行為建議的藥物、器材或治療疾病的程序;或其他不需要健康照護提供者參與的情境,但實施後會直接改變人體結構或功能的藥物、器材或程序。   僅從人體蒐集資料者,被歸類為臨床軟體(由醫療院所、健康照護提供者裝設)或健康軟體(由民眾自為)。兩者的區別,主要在由誰提供並裝設。   所謂臨床軟體,是醫療院所或健康照護提供者在提供服務時使用,提供臨床決策支援目的之軟體,包括抓取、分析、改變或呈現病患或民眾臨床數據相關的硬體和流程,但不會直接改變人體結構或任何功能。   根據Research2Guidance於2013年2月發表的調查報告(Mobile Health Market Report 2013-2017),目前在APPLE的APP Store上已有97,000個行動健康類的APP程式,有3百萬個免費、30萬個付費下載使用者。15%的APP是專門設計給健康照護提供者;與去年相比,已有超過6成的醫生使用平板提供服務。預測消費者使用智慧型手機上的醫療APP的數量,在2015年將達5億。這個法案的出現,外界以為,提供了科技創新者較明確的規範指引,允許醫療的進步和創新。

英國資訊委員辦公室(ICO)發布沙盒執行過程中所觀察到的關鍵議題

  2019年9月英國資訊委員辦公室(Information Commissioner's Office, ICO)啟動沙盒計畫(ICO Sandbox)測試階段(beta phase),由ICO所選10個測試專案,透過解決當今社會問題,例如如何減少暴力犯罪、大學如何促進學生的心理健康、新技術如何改善醫療保健等,期能促進公眾利益。   各專案在滿足創新性和可行性前提下,同時也面臨著複雜的資料保護議題,因此ICO持續與各專案溝通,提供其應用現有個資保護指引之建議,如歐盟一般資料保護規則之資料保護影響評估指導文件(Guide to the GDPR - Data protection impact assessment)、資料保護自我評估工具包(Data protection self-assessment toolkit)等。自2019年3月底開始(受理申請)迄今,ICO沙盒執行過程中所觀察到的關鍵議題如下: 公部門資料應用效益:部份參與者正在克服與公部門進行歷史資料共享,或是如何整合應用大數據等。個人資料與新技術應用,必須與資料主體的權利和自由進行權衡。 同意:確保各方對於「同意」(Consent)之理解,以弭平差異,同時向公眾提供透明資訊。 新技術的挑戰:應用語音生物辨識(voice biometrics)、臉部辨識技術(facial recognition technology, FRT)等,需要在適當基礎上處理特殊類別資料。 資料分析(Data analytics):以符合資料保護的方式進行資料分析,處理特殊類別資料的適法性,評估處理過程中的風險,並檢查可能用於資料分析的資料來源,確保符合目的之應用。   未來的6個月,ICO將持續與各專案合作,使其為有效的解決方案,為公眾提供創新合規之產品與服務,並成為未來結合資料保護和創新應用之規劃藍圖,以奠定隱私保護的基石。

TOP