日本通過法案 明確列出無人機禁止飛行範圍

  有鑑於今年4月底,一架攜帶具有放射性物質的小型無人機墜毀在日本首相官邸的屋頂上,對元首維安構成威脅,日本政府為此決定加強無人機管控。日本國會並於9月通過民用航空法(Civil Aeronautics Law)修正案,明確列出無人機禁止飛行範圍,違反者最高將可處以50萬日圓(約4,200美元)以下罰鍰,但因災害或自然事故發生而利用無人機進行救援、搜索行動不在規範範圍。

  法案主要修正內容為,特定空域未經申請不可飛行,例如禁止無人機飛越人口密集的住宅區及機場周邊區域,人口密集地區,以每平方公里人口4,000人為界,因此東京都23區和主要區域城市,將會列為無人機禁航區。另外,在舉行慶祝活動及展覽等會吸引大批群眾暫時聚集的地區上空,無人機亦不可飛行。

  然而,通過申請後的飛行區域,仍須遵守幾項要求,如無人機須於日間目視範圍內飛行、無人機與人員及建築物必需保持一定距離,以及未經政府許可,夜間不可使用無人機,並禁止無人機裝載爆炸裝置等會造成人員傷害或財物損失的危險物品。除此之外,並定義「無人機是透過遠程遙控或自動駕駛儀器飛行,且無人機作為機器不能搭載乘客」,但輕量型玩具飛機不包含在內。修訂後的法案將於今年年底前開始施行。

  此外,下議院目前仍審議有關禁止無人機靠近重要設施,包含首相官邸、國會、皇宮、核電廠之草案。

相關連結
※ 日本通過法案 明確列出無人機禁止飛行範圍, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7001&no=67&tp=1 (最後瀏覽日:2025/11/05)
引註此篇文章
你可能還會想看
俄羅斯聯邦政府發布第299號法令,得不經授權利用「不友好國家」的專利權

  俄羅斯聯邦政府於2022年3月7日發布第299號法令(Постановление Правительства Российской Федерации № 299,下稱本法令),規定於有國家利益考量之情況下,得不經授權利用「不友好國家」的專利權。而我國也在前述「不友好國家」名單之列。   具體而言,本法令之解釋脈絡應從俄羅斯民法(Гражданский кодекс Российской Федерации)第1360條談起,該條規定在確保國家安全或保護公民生命與健康之極端必要情況下,俄羅斯聯邦政府有權決定,未經專利權人同意,使用相關發明、新型和工業品外觀設計,惟需儘快通知專利權人,並支付相應之補償金。   2021年10月18日,俄羅斯聯邦政府按民法第1360條第2項規定,頒布第1767號法令(Постановление Правительства Российской Федерации № 1767)確定補償數額為受專利保護之商品與服務所產生實際收益之0.5%。   然而,因烏俄戰爭持續延燒致俄羅斯聯邦政府採取反西方制裁措施之故,其發布第299號法令,針對第1767號法令再次增修補償數額之認定方法,規定:「倘專利權人來自『不友好國家』,則俄羅斯實體或個人未經專利權人同意,使用相關發明、新型或工業設計進行生產、銷售商品、提供勞務及服務時,須向權利人支付權利金為前述活動所產生實際收益之0%」。   基此,第299號法令應限縮在有國家利益考量之情況下(如:與國家安全或保護俄羅斯公民的生命、健康相關),針對使用特定的專利或商品,可免支付專利強制授權的補償金。換言之,本法令不應解讀為,任何專利在俄羅斯都可恣意利用,而無需經權利人同意或支付適當補償。惟因無法預期未來俄羅斯聯邦政府對「不友好國家」會否有其他強制授權情事,故我國經濟部智慧財產局發函通知專利權人,應密切關注相關議題,並預作準備以降低風險。

父母對子女網路使用法律責任之相關德國判決-由『國小生轉貼 YouTube 連結被控侵害著作權』新聞談起

從「數位休閒娛樂產業」之法制需求談我國娛樂業法制規範之可能性

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP