運作技術成熟度(Technology Readiness Level)進行技術評估

運作技術成熟度(Technology Readiness Level)進行技術評估

資策會科技法律研究所
法律研究員 羅育如
104年10月22日

壹、前言

  為提升我國科技競爭力,於1999年制定科學技術基本法(以下簡稱科技基本法),透過科技基本法的規定,使原本歸屬國有財產之研發成果,得以下放歸屬執行單位所有,使大學對研發成果能有更完善應用之權利。

  科技基本法實施之後,各研究單位開始學習國外經驗,積極進行產學合作,將內部之研發成果技術移轉與外部產業。但是,科技基本法實行已15年的今日,各界逐漸發現,政府經費之投入與研發成果產出之經濟效益有相當大的差距。例如科技部102年專題研究計畫補助經費為215億新台幣,但僅創造3.5億新台幣之衍生成果技術移轉權利金[1]。政府經費投入與產出不符預期的議題,牽涉多元層面問題,但是從新設立政府計畫案之目標與KPI,可以發現政府新創設之補助計畫開始以協助技術商業化作為主要目的,例如萌芽計畫、產學計畫等。

  技術商業化操作模式會依據技術成熟度不同而有所差異,技術成熟度高的項目,廠商承接後所需要投入的研發成果可能較低,直接協助廠商改善生產流程或是成為產品商品化的機率較高;反之,廠商則需要投入較多的技術研發費用,需要花費較多的人力與資源,技術才有機會商品化。

  由此可知,在技術商業化計畫推廣時,技術項目的技術成熟度是一個重要的評估關鍵。本文針對技術成熟度的評估指標詳細說明,以提供執行技術商業化計畫時,評估技術項目之參考。以下會分別說明何謂技術成熟度以及技術成熟度如何運用,最後會有結論與建議。

貳、技術成熟度說明

  技術成熟度或稱為技術準備度(Technology Readiness Level;簡稱TRL)是美國太空總署(NASA)使用多年的技術評估方法,後來為美國國防部所用,再廣為國際各政府機構、學研單位、企業機構使用。

  TRL是一個系統化的量尺/衡量指標,可以讓不同型態的技術有一致性的衡量標準,描述技術從萌芽狀態到成功應用於某項產品的完整流程[2]。而TRL涵蓋的技術研發流程則包括四個部分:(1)概念發展:新技術或是新概念的基礎研究,涵蓋TRL1~3;(2)原型驗證:特定技術針對一項或是多項潛在應用的技術開發,涵蓋TRL4與5;(3)系統開發:在某一應用尚未成為一整套系統之前的技術開發以及技術驗證,然後進行系統開發,涵蓋TRL6;(4)系統上市並運作[3],涵蓋TRL7~9。以下分別說明TRL每個衡量尺度的定義[4]

TRL 1 基礎科學研究成果轉譯為應用研究。
TRL 2 為某項特殊技術、某項材料的特性等,找出潛在創新應用;此階段仍然是猜測或推論,並無實驗證據支持。
TRL 3 在適當的應用情境或載具下,實驗分析以驗證該技術或材料相關物理、化學、生物等特性,並證明潛在創新應用的可行性(proof-of-concept)。
TRL 4 接續可行性研究之後,該技術元素應整合成具體元件,並以合適的驗證程序證明能達成原先設定的創新應用目標。
TRL 5 關鍵技術元件與其他支援元件整合為完整的系統/系系統/模組,在模擬或接近真實的場域驗證。需大幅提高技術元件驗證的可信度。
TRL 6 代表性的模型/雛形系統在真實的場域測試。展示可信度的主要階段。
TRL 7 實際系統的雛形品在真實的場域測試。驅使執行TRL7的目的已超越了技術研發,而是為了確認系統工程及研發管理的自信。
TRL 8 實際系統在真實的場域測試,結果符合設定之要求。代表所有技術皆已整合在此實際系統。
TRL 9 實際系統在真實場域達成目標。

參、技術成熟度應用

  技術成熟度可以單純拿來衡量技術開發階段、可用來衡量技術開發風險、也可作為研發機構角色以及補助計畫定位的參考,以下說明。

一.技術成熟度用來衡量技術開發階段

  這是技術成熟度最單純的應用方法,但因為每種技術領域都可其特殊的技術開發脈絡,所以可以根據NASA原有的技術成熟度,修改成貼近該技術領域需求的技術成熟度指標。目前有看過軟硬體TRL指標、綠能&能源TRL指標、ICT TRL指標、生醫(新藥、生物製劑、醫材)TRL指標等[5]

二、技術成熟度用來管理技術研發風險

  研究開發需投入大量的人力、物力,而研究成果的不確定性又很高,所以需要有良好的技術研發管理。技術成熟度對技術研發管理而言,是風險的概念,一般而言,TRL階段與技術風險是反向關係,也就是說TRL階段越高,技術風險越低[6]

  需要考慮的面向包括[7] ,(1)現在技術成熟度在哪一階段?以及我們投入研發後,希望達到的技術成熟度目標為何?(2)從現在的技術成熟度到專案需要的技術成熟度,要精進這項技術到底有多難?(3)這項特定技術如果開發成功,對於全面技術目標而言的重要性如何?

三、機構角色以及補助計畫定位

  TRL指標可用來明確區分研發機構角色定位,例如工研院內部運用TRL指標做為技術判斷量化評估指標,並且工研院需將技術成熟度提升到TRL6或7,以克服技術面的問題,進行小型試量產,才能跨越死亡之谷讓業界接手商業化[8]

  TRL指標也可以用來區分補助計畫的標的範圍,例如美國國防部傾向投資TRL 4階段技術,美國國防部培養TRL4以及4以下的技術到TRL6階段,使得這些技術能更順利的進入技術市場,其原因在於TRL程度越低,成功商品化的不確定性以及風險就越高,而TRL4階段技術項目,是美國國防部可以承受的風險程度[9]

肆、結論

  TRL指標現在已被廣泛的運用在技術評估工作上,透過量化的指標,協助研發人員或是技術管理人員方便掌握每個技術開發案的現況,例如現在技術在TRL哪個階段,技術開發結束後,TRL預計會到達哪個階段。確定目標之後,就可以進一步評估這個計畫開發案的風險並評估組織需投入的資源。

  TRL是一個簡易的技術評估指標,但如果要以此做出全面性的技術策略,似乎就還是有所不足,因此,可以再搭配其他技術評估變項,發展為全面性的技術風險管理評估指標,可能可以搭配技術開發困難度指標,用以評估TRL往上提升一級的困難度程度[10],也可以搭配技術需求價值指標[11],這項技術順利成功的話,對整個系統開發而言的價值高低,價值非常高的話,就值得花更多資源與人力去投資。

  由此可知,應該可以積極運用TRL指標,用來評估政府技術補助計畫,協助大學技轉辦公室管理各研發團隊之技術開發進程,也可提供技術移轉潛在廠商清楚設定技術規格,減低技術供給方與技術需求方之間的認知差異,進而提升技術移轉成功率,也就可以拉近政府經費投入與研發成果產出的差距。


[1] 行政院國家科學委員會,行政院國家科學委員會102年年報,頁24、98(2013),http://www.most.gov.tw/yearbook/102/bookfile/ch/index.html#98/z,最後瀏覽日2015/07/21。

[2] John C. Mankins, NASA, Technology Readiness Levels: A White Paper (1995).

[3] id.

[4] US DEPARTMENT OF DEFENSE (DoD), Technology Readiness Assessment (TRA) Guidance (2011), http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf (last visited July 22, 2015).

[5] Lewis Chen,<Technology Readiness Level>,工研院網站,http://www.sti.or.th/th/images/stories/files/(3)ITRI_TRL.pdf (最後瀏覽日:2015/07/22)。

[6] Ricardo Valerdi & Ron J. Kohl, An Approach to Technology Risk Management (2004), http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 22, 2015).

[7] John C. Mankins, Technology Readiness and Risk Assessments: A New Approach, ACTA ASTRONAUTICA, 65, 1213, 1208-1215 (2009).

[8] 邱家瑜、蔡誠中、陳禹傑、高皓禎、洪翊恩,<工研院董事長蔡清彥 以新創事業連結全球市場 開創屬於年輕人的大時代>,台灣玉山科技協會,http://www.mjtaiwan.org.tw/pages/?Ipg=1007&showPg=1325 (最後瀏覽日:2015/07/22)。

[9] Ricardo Valerdi & Ron J. Kohl, Massachusetts Institute of Technology, An Approach to Technology Risk Management, http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 21, 2015).

[10] 同註7。

[11] 同註7。

※ 運作技術成熟度(Technology Readiness Level)進行技術評估, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7031&no=67&tp=1 (最後瀏覽日:2025/11/18)
引註此篇文章
你可能還會想看
美國專利商標局宣布快軌上訴試驗計畫

  美國專利商標局(The United States Patent and Trademark Office, USPTO)於今年7月1日發布新聞稿,即專利審判及上訴委員會(Patent Trial and Appeal Board, PTAB)開始加速處理單方上訴的計畫。該計畫名為「快軌上訴試驗計畫(Fast-Track Appeals Pilot Program)」並於今年7月2日正式啟動。   根據該計畫,專利審判及上訴委員會上訴裁決的目標時間預計為該上訴被賦予快軌(即批准加速審查)之日起六個月內,此與美國專利商標局之期望相符。蓋目前單方面上訴的裁決時間平均約14個月,因此,對於申請該計畫的人來說,該計畫平均應將上訴程序縮短約8個月。惟申請該計畫所需費用為400美元,且被批准的申請案會被限制在每季125件,會計年度最多500件,預計施行一年。   美國商務部負責智慧財產權事務副部長兼USPTO局長Andrei Iancu表示:「這是USPTO史上首次,申請人將能夠加快專利審查和單方上訴的速度,從而能較典型申請案約一半的時間內,就其最重要的發明做出決定。」。PTAB首席法官Scott Boalick亦表示:「近年來,我們取得了長足的進步,將上訴待決時間從2015年的平均30個月減少到目前的平均14個月。很高興PTAB現在能夠為申請人提供更快的途徑,從而使發明人和企業能夠更快地將其專利發明商業化。」   值得一提的是,我國智慧財產局亦有發明專利加速審查(Accelerated Examination Program, AEP)及商標加速審查機制。而AEP更早於民國98年1月1日起試辦實施,依據申請事由之不同,智財局將在申請人齊備相關文件後,於6個月內或9個月內發出審查結果通知。

美國FCC將檢視是否有必要加強隱私規定

  美國FCC於二月份表示其將檢視採取額外的安全措施,是否能夠有效防止電信公司所持有之個人敏感性資訊外洩之問題,並就與此所涉之問題與建議採取之法律措施諮詢公眾之意見。此次諮詢的議題包括目前電信公司所採取的安全措施為何、此等措施存有何種缺失、以及採取何種措施將能夠更有效地保護消費者的隱私,並就以下五種特定的安全措施,諮詢公眾之意見,包括: (1) 由消費者設定密碼。 (2) 建立一套查驗機制,此一機制必須能夠記錄消費者個人資料之接近使用情況,包括時間、接近使用的資料內容、接近使用人…等之資訊。 (3) 電信公司必須就客戶專有之網路資訊 (customer proprietary network information,CPNI)進行加密。 (4) 限制資料之保存,要求電信公司必須刪除所有不必要的資料。 (5) 當個人資料遭他非法接近使用時,電信公司應通知消費者。   除此之外,FCC亦就其是否應修改現行法規,要求電信公司應就其實施消費者保護措施之狀況,提交年度稽核報告以及全年之客訴資料進行公眾意見諮詢,並且就電信公司是否應於提供CPNI前,致電予消費者,以確保CPNI資料之索取係由消費者本人親為一事諮詢公眾之意見。

加州立法機關提出社群媒體青少年成癮法草案,促進兒童身心福祉

社群媒體是溝通資訊之重要工具。但部分社群媒體向用戶投放易使人成癮的資訊,對兒童和青少年福祉形成重大風險。據此緣由,美國加州立法機關於2024年1月29日提出社群媒體青少年成癮法草案(Social Media Youth Addiction Law),規定社群媒體除非能合理確定用戶非未成年人,或取得未成年用戶家長同意,否則不得向用戶提供易使人成癮的資訊。 該草案將網路或應用程式中,依用戶特徵或習慣,優先顯示的多片段資訊,定義為易使人成癮的資訊(addictive feed)。除非該資訊符合以下例外條件: (1) 用戶用以搜尋資訊的關鍵字不會被使用的設備記憶,且該資訊與用戶過去的社群媒體使用行為無關。 (2) 是因用戶隱私設定、設備規格、未成年人限制而呈現的資訊。 (3) 是因用戶明確要求而提供,且不易使人成癮的資訊。 (4) 是用戶間直接且非公開之通訊組成的資訊。 (5) 是同一資訊來源,且在音檔或影片形式下,不會自動連續播放的資訊。 該草案亦規定投放易使人成癮資訊的社群媒體,不得在深夜至凌晨時段、上學至放學時段,以及開學期間的週一到週五,向未成年用戶發送通知,除非已取得未成年用戶家長同意。 最後,該草案規定投放易使人成癮資訊的社群媒體每年向公眾揭露未成年用戶總數量、家長同意接收易成癮資訊的未成年用戶數量等資訊。該規定有利大眾監督社群媒體對法規之遵循情況,並促進社會對兒童、青少年身心健康的關心。

演算法歧視將適用於《紐澤西州反歧視法》

2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。

TOP