美國能源部(Department of Energy, DOE)所屬之電力傳輸與能源可靠度辦公室(Office of Electricity Delivery and Energy Reliability, OE)與聯邦智慧電網工作小組(Federal Smart Grid Task Force)對於由智慧電網技術所生之資料相關隱私保護問題,經過一系列包括相關業者在內的公眾意見徵集與專家學者討論後,於2015年1月12日所發布之「自願行為守則」(Voluntary Code of Conduct, VCC),係屬美國總統歐巴馬同日宣示政策,公布對於強化消費者安全、處理身分盜用(identity theft)、並促進線上隱私保護之總體策略方向中的重要部份。
「自願行為守則」的適用對象是供電業者與第三方,目的在於保護包括能源使用資訊(energy usage information)在內的電業消費者資料,並提高消費者的隱私意識與相關資料在提供與近用上所須行使的同意與控制。「自願行為守則」揭示其三大目標,包括:(一)於鼓勵創新的同時,適切地保護消費者資料的隱私與機密性,並提供可靠與不致於無法負擔之電業與能源相關服務;(二)提供消費者對其自身資料的適當近用(appropriate access);以及(三)不生違反或取代任何聯邦、州、或地方主管機關之法令或管制措施之效果。
而為求取前揭目標之達成與實現,「自願行為守則」訂有五大步驟。此五大步驟包括:(一)「消費者之注意與意識」:透過相關規定向消費者解釋資料蒐集的相關政策與程序,並聚焦於消費者的選擇與責任,藉以讓消費者了解其所必須行使之同意;(二)「消費者之選擇與同意」:透過相關規定讓消費者能為非原始目的(Secondary Purposes)——例如向數個第三方為差別化之近用授權、限制近用之期間、留存資料釋出之記錄、取消授權、以及於授權終止或不再需要相關資料時之資料處置或去識別化等——對其資料之近用進行相關管控、確認有哪些類型的資料與揭露無須消費者同意、以及要求特定資料應直接由消費者處取得;(三)「消費者資料近用」:透過相關規定允許消費者近用其資料、確認可能的錯誤、以及要求更正的相關程序,其中包括在特定情況下就非常態性要求收取費用的可能性;(四)「資料的完整性與安全性」:透過相關規定規範網路安全管理計畫,以及聚合性資料(Aggregated Data)或匿名性資料的建立方式;(五)「自發性執行、管理、與矯正」:透過相關規定對自願採納本「自願行為守則」之服務提供者的行動作出規範,以確保其遵守行為守則。「自願行為守則」雖屬自律規範,但其制定過程有包括電力業者在內之利害關係人的充分參與,並經充分之專家與公民意見徵集,被預期在公布之後將有相當程度之約束力量,並能令因智慧電網與能源資通訊技術所生之相關隱私權保護問題得到更進一步的解決。
本文為「經濟部產業技術司科技專案成果」
日本內閣府知的財產戰略本部在2019年6月21日公布本年度知的財產推進計畫(下稱本計畫),以「脫平均」、「融合」、「共感」做為本計畫三大主軸: 脫平均:依不同個體特性培養頂尖人材,促進新領域之挑戰及創造。以經產省、文科省、總務省、法務省為主責部會,實施包括培養具出色創造能力之人材、提供新創之後備資源、強化盜版因應對策、EdTech(教育科技)之活用、蒐集「STEAM教育」事例等策略。 融合:透過融合不同特性之分散個體,達成加速創新之作用。以經產省、文科省、法務省、厚生省、農林水產省、公正取引委員會為主責部會,實施包括創建智財資產平台、建構有助於AI及資料創作的相關規範等策略。另外修正資料信託認定方案的相關指針、提出資料銀行相關典範案例亦為重點。 共感:以經產省、總務省、外務省、文科省為主責部會,創造價值實現之友善環境,實施包括強化Cool Japan政策、籌劃音樂著作權利資訊資料庫、規劃能對應跨境傳輸之外語Metadata,協助將日本音樂推向海外市場等策略。 綜上,不難發現日本已將「創造」做為本計畫發展之核心概念。從人材培育、創造資料價值及打造軟實力產值等,都顯示智慧財產除保護之外,更應提升並擴散其價值。回顧我國智財戰略綱領在2017年結束之後,並沒有相關計畫延續。然而智慧財產是一國軟實力之展現。透過潛移默化的浸潤,能達到比任何硬實力還大之功效。我國應該思考如何重啟智財戰略,拓展我國軟性底蘊。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。
英國公布「調查權法草案」(Investigatory Powers Bill)英國內政部(Home Office)於2015年11月4日公布一項關於網路監管的「調查權法草案」(Draft Investigatory Powers Bill),其主要目的係為提供執法、國安及情治單位,如英國安全局(MI5)、秘密情報局(MI6)、英國政府通訊總部(GCHQ)對於資通訊內容之掌控能力,用以因應數位時代不斷升高的維安需求,例如防止恐怖攻擊、兒童性剝削、破解跨國犯罪集團、協尋失蹤人口、犯罪現場之定位及嫌疑人相關聯繫對象等,該草案一旦通過,將迫使網路及電信服務業者保留其客戶之通訊數據、瀏覽記錄長達一年,甚至在必要情況下,協助英國政府攔截通訊數據、破解加密訊息。 其條文共計202條,分為九部分,對於通訊數據調查權行使所採取之主要手段包含攔截通訊(Interception)、數據監看(Oversight)、以設備干擾連結(Equipment Interference)、大量蒐集個人通訊資料(Bulk Powers)等,由於法案將擴張英國政府對網路隱私之干涉,對此內政大臣Theresa May表示,新法對於瀏覽記錄著重於使用者到訪過哪些網站,而非其瀏覽過的每一個網頁,同時,對於某些握有他人敏感資料的職業,例如醫生、律師、記者、國會議員及神職人員等,擁有較多的保護。 此外,草案亦闡明將建立政府自我監督及防濫權機制,包含未來將創設調查權利委員(Investigatory Powers Commissioner,簡稱IPC)專責監督政府調查權之行使,以及一套稱為Double Lock的新制度,即前述攔截數據資料權之行使,須有內政大臣親自核發之令狀,且該令狀應獲得司法委員(Judicial Commissioner)之批准。 這項草案無疑將引來公益與私利間之衝突,也在資通訊業界造成極大的反彈,縱然「調查權法案」並未限制相關電信與網路業者不得對其服務加密,卻要求於必要情況下提供解密協助,然而目前許多通訊服務採「點對點加密」(End-to-End Encryption)技術,若非發送及接收兩端之人,即便是提供該服務之公司也無法解密,一旦草案通過,類似WhatsApp或Apple所開發之iMessage將如何在英國使用,將會是未來觀測的重點。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。