歐盟執委會於2009年4月23日發布再生能源指令(DIRECTIVE 2009/28/EC),目標在2020年達成20%的再生能源利用;並於2011年1月31日發布「再生能源:邁向2020目標」(Renewable Energy: Progressing towards the 2020 target)通訊報告,檢視歐洲再生能源產業概況及所面對的挑戰,透過與「歐洲及國家再生能源領域之財務檢視」(Review of European and national financing of renewable energy in accordance with Article 23(7) of Directive 2009/28/EC)、「運輸領域使用生質燃料及其他再生燃料的發展及技術評估」(Recent progress in developing renewable energy sources and technical evaluation of the use of biofuels and other renewable fuels in transport in accordance with Article 3 of Directive 2001/77/EC and Article 4(2) of Directive 2003/30/EC)及「生質燃料及生質燃油永續計畫報告」(Report on the operation of the mass balance verification method for the biofuels and bioliquids sustainability scheme in accordance with Article 18(2) of Directive 2009/28/EC)等三份報告的結合,瞭解再生能源領域發展所須的支出、確保其品質、運用最有效率及最具經濟效益的手段,架構歐洲再生能源利用之2020年目標。 為達此一目標,各會員國自行採取相關措施加以推動,每年投入的資金呈倍數的成長;然在2020年之後,卻未見相關政策規劃。為持續發展再生能源,執委會於2012年6月6日發布「再生能源:歐洲能源市場的重要角色」(Renewable Energy: a major player in the European energy market)通訊報告,呼籲各會員國在相關計畫的建立與改革採取更協調一致的措施,提升會員國間再生能源的交易,並探討2020年之後再生能源的發展框架。此一通訊報告包含兩部分:第一、為達2020年的再生能源發展目標,指出四個須加速推動的領域;第二、開始思考2020年後之規劃框架。 針對應加速推動以達成2020年發展目標的四大領域,包括(1)能源市場、(2)支援計畫(support schemes)、(3)合作機制、(4)地中海區能源合作計畫。歐盟執委會堅持達成境內能源市場的整合,並認為有必要提供投資獎勵,以順利進行。對於相關支援計畫,應鼓勵降低成本並避免過度補貼;由於支援計畫多由各國政府主導,而各國可能有缺乏透明度、突然終止、甚至補助差異,造成市場運作模式的阻礙,因此執委會呼籲透過跨國的合作來解決。此外,執委會鼓勵增加合作機制,使會員國間能透過再生能源的交易、降低成本,以達成再生能源利用目標。針對地中海區的能源合作計畫,執委會建議改善其管理框架,並著重於整合馬格里布地區(Maghreb)的市場,將有助於大規模投資,進口再生能源電力。 針對2020年後之發展,則應兼顧創新與降低成本,促進對再生能源的投資。依據歐洲「2050能源路徑圖」(Energy Roadmap 2050)之規劃,開始探討邁向2030的發展策略,主要仍以溫室氣體排放、再生能源及能源效率為政策目標。執委會強調,儘速確定2030年的發展規劃至關重要,此規劃並應使再生能源業者在能源市場上提升其競爭力。
瑞士聯邦委員會發布氣候揭露規則,規範企業非財務資訊揭露義務標準瑞士聯邦委員會(The Swiss Federal Council)於2022年11月23日發布氣候揭露規則(L'ordonnance relative au rapport sur les questions climatiques),旨在補充《瑞士債法典》(Code des Obligations)企業非財務資訊揭露義務之標準,要求瑞士大型企業呈現明確、可供比較的氣候資訊,並於2024年1月1日起生效。 依照《瑞士債法典》第32章第6節「非財務事項之透明度(Transparency on Non-Financial Matters)」規定,擁有500位以上員工,且資產負債表總額為2000萬瑞士法郎以上或營業額超過4000萬瑞士法郎之上市公司、銀行和保險公司(下稱大型企業)每年應揭露非財務資訊。氣候揭露規則就此進一步補充該章節的內容,要求大型企業依照國際公認標準揭露氣候資訊,要點如下: (1)明定包括氣候對大型企業造成的影響與企業活動對氣候造成的影響在內的資訊,皆應於大型企業的非財務資訊報告中公布。 (2)將氣候相關財務揭露工作小組(Task Force on Climate-related Financial Disclosure, TCFD)公布之「TCFD建議書(Recommendations of the Task Force on Climate-related Financial Disclosures)」與附件「TCFD建議書之實施(Implementing the Recommendations of the Task Force on Climate-related Financial Disclosures)」納為瑞士大型企業氣候揭露標準,包括治理、戰略、風險管理及關鍵指標與目標四項主題,並應留意建議書「適用所有部門(all-sectors)」與「個別部門(certain sectors)」之指引。 (3)如未依規定揭露者,則應說明其遵循氣候揭露義務的其他方式,或說明無須遵循的正當理由。
英國4G釋照近況在經歷1個多月、共50回合4G(含LTE與Wimax)頻譜拍賣後,英國Ofcom在2月20日宣布Everything Everywhere Ltd(EE)、 Hutchison 3G UK Ltd、 Niche Spectrum Ventures Ltd、 Telefónica UK Ltd (O2)與Vodafone Ltd五家公司取得頻譜執照。這次4G釋照拍賣收入比預期少10億英鎊,但也挹注英國政府23.4億英鎊,使財政得以紓緩。目前,英國民眾最晚於2017年,就可享有更快、更便宜與覆蓋性更佳的4G服務。 此次頻譜釋出共有250MHz取自於800MHz與2.6GHz。800MHz之得以釋出,來自於類比電視訊號關閉後,因頻譜重整所取得之「數位紅利」,並採取分頻多工(frequency division duplexing,FDD);至於,2.6GHz則依頻段不同,而分別採用分頻多工與分時多工(time division duplexing,TDD)。由於,800MHz擁有優良覆蓋性,是故,英國政府藉由800MHz特性,釋放一張2*10MHz之執照,並規定業者覆蓋義務,以達到英國發展行動網路之目標。目前,取得該執照的O2,最晚於2017年須提供98%人口於室內可取得行動寬頻服務、至少95%人口能於英國境內(英格蘭,北愛爾蘭,蘇格蘭和威爾士)取得4G服務。 在Ofcom採取組合價格鐘拍賣型式(combinatorial clock auction,CCA)下,目前,業者已完成頻譜標得區塊數目(Eg:EE於800MHz取得一張2*5MHz),待得標者完成配置(Assignment stage)頻段位址(Eg:EE頻段確定在800 MHz ~805 MHz),最快於2013年夏天,英國民眾可更普及的享有下述優點: 1.網速可達到100Mbp,超越現今3G五至十倍。 2.使用智慧型手機、平板觀看電視,雜訊、遲緩的問題將不復見。 3.使用高畫質視訊將更為輕鬆,並且,照片與影片上傳於社群網站將非常迅速。 4.偏遠地區可因4G的覆蓋性廣而具有網路服務。 OFCOM不僅促進4G市場競爭外,並在今(2013)年年底提供報告,告知消費者與企業4G服務發展現況、地理位址,與網路速度,讓使用者有能力作出最好的選擇。而在未來的發展上,許多研究單位估計2030年時,行動網路的傳輸需求將可能是現在80倍,英國亦開始探討釋出頻譜發展5G的可能性,以因應未來供不應求所導致的「容量危機」(capacity crunch )。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)