本文為「經濟部產業技術司科技專案成果」
2021年7月13日,美國俄亥俄州(下稱俄州)副州長Jon Husted宣布推出《俄州個人隱私法》(Ohio Personal Privacy Act, OPPA,下稱本法),這是美國近期最新州級別的個人隱私保護法草案,並提出企業可資遵循隱私標準俾該州消費者隱私之保護。 首先,本法草案除賦予該州消費者知悉權、近用權、刪除權外,更賦予資料銷售退出權(right to opt out sales)及不受歧視權(right to discrimination)。並於俄州境內規範三種企業:(一)年營收逾2,500萬美元;(二)單一年度內經手10萬名以上消費者個資;(三)年營收半數源自於個人資料銷售且經手2.5萬名以上消費者個資。 惟所稱企業,排除如:州立機關或機構、受管制之金融機構及其附屬單位、實體或關係組織、高等教育機構等;至所稱消費者個資,則排除如:法規保護之個資(如健康資訊及紀錄、病患辨識資訊、人類受試者之個資及相關資訊、病患安全工作成果、個人信用等)、依法(如駕照法、家事法、醫療法及本法等)所得個資或依法授權得使用於公衛之資訊等。 特別的是,如企業違反本法,消費者並無獨立訴訟權,其執法權專屬州總檢察長。因此,如本法日後通過並施行,無論對俄州企業抑或消費者權益之影響,均有待觀察。
歐盟發布「2021年數位經濟與社會指數」,指出數位轉型持續但不均歐盟執委會於2021年11月12日發布「2021年數位經濟與社會指數」(Digital Economy and Society Index 2021, DESI 2021),指數顯示歐盟各成員國都在持續推動數位轉型,但存在前段國家與後段國家之間的鴻溝仍然巨大,為了達成「歐洲數位十年:2030數位轉型目標」(Europe’s Digital Decade: digital targets for 2030),各成員國間應加強在數位轉型的協力合作。 DESI 2021統計資料取自2020年第一季到第二季之間,因此對於COVID-19疫情肆虐下對歐洲各國數位化的影響,需要等到2022年的指數方能呈現。不過DESI 2021資料顯示,56%的歐盟公民已經具備基本的數位技能,而歐盟資通訊專業人員數量來到840萬人,相較前一年的780萬人有顯著成長,但仍有55%的企業表示推動數位轉型最大的困難在於找不到資通訊人才。 在連線能力方面,歐盟推動「超高容量網路」(very high-capacity network, VHCN)的成果使家戶普及比例來到59%,相較前一年的50%亦有明顯增長,但相較全球高速寬頻網路普及目標仍有相當大的差距;在鄉村VHCN的布建上,則由2019年的22%來到2020年的28%。5G網路方面,完成頻譜分配的國家從16個成長至25個,其中有13個國家已經啟動5G商轉。 在數位科技整合方面,運用雲端技術的公司比例出現顯著成長,由2018年的16%成長至2020年的26%,大型企業持續擴大數位科技應用,包含運用企業資源規劃(Enterprise Resource Planning, ERP)進行電子資訊分享、雲端軟體的使用等。資料顯示數位轉型正在不斷落實與推進,但是要達成2030數位轉型目標仍有相當大的差距,有賴各國的合作與努力。
FCC將關閉北卡地區之類比無線電視完成700MHz頻段之頻譜拍賣後,美國通訊傳播委員會(Federal Communications Commission, FCC)亦開始積極著手準備頻譜回收工作,以期能夠順利在2009年2月17日全面關閉類比無線電視訊號,完成無線電視數位化及頻譜回收。 為能提早發現關閉類比無線電視訊號可能帶來之問題或影響,FCC於2008年5月8日宣布將在2008年9月8日中午12時正式關閉北卡威明頓(Wilmington)地區之類比無線電視訊號。在此次關閉類比無線電視訊號過程中,FCC將和無線電視、有線電視等相關業者及協會密切合作,以解決過程中發生的任何問題。FCC之所以選擇威明頓地區率先關閉無線類比電視訊號,主要原因之一在於威明頓地區的四大電視網均已完成數位化工作,並自願提前關閉類比無線電視訊號。 針對於FCC此一測試計畫,美國國家廣播電視協會(National Association of Broadcasters, NAB)亦發表聲明表示支持與配合。除此之外,NAB同時表示此次試驗的結果必須被審慎檢驗,並用於決定如何關閉全國的類比無線電視訊號。NAB希望有關單位透過此次試驗之結果,決定明年全面關閉類比無線電視訊號時,聯邦、州及地方政府應如何合作、數位機上盒供應、有線電視及衛星電視業者之配合等相關問題。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。