德國聯邦議會通過電力驅動車輛優惠法(下稱電動車法(Gesetz zur Bevorrechtigung der Verwendung elektrisch betriebener Fahrzeuge ,Elektromobilitätsgesetz-EmoG),該法遂於於2015年6月5日生效。
德國為了達到減碳目標,不但大力推動再生能源,且亦於五年前成立國家電動車平台,希望於2020年達到全國有100萬輛電動車在街道上行駛之目標,德國政府為達此一目標,修法讓電動車可享地方政府提供的停車位以及可使用巴士車道兩項優惠。
該法對電動車之定義為(1)電池驅動車輛(2)可充式之油電混合車輛及(3)燃料電池車輛(電動車法第2條),並提供優惠予(1)公用道路巷道之停放(2)全部或一部特定公用道路巷道之特別使用(3)進入或通過禁行區域,例外地許可之(4)公用道路巷道停放時之規費,免除之(電動車法第3條第4項)。
另外,為推廣使用,依道路交通秩序法第46條第1a項,電動車輛亦得黏貼特殊標識行駛於交通管制區、禁行區域及需繞道之路段。供巴士行駛道路亦同。而為了電動車之辨識,本法第4條亦規定電動車標識應具備之內容,並於2015年9月26日發相關之電動車標示規則。
本文為「經濟部產業技術司科技專案成果」
英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)於2022年6月22日公布「英國醫療器材監管的未來之公眾諮詢政府回應」(Government response to consultation on the future regulation of medical devices in the United Kingdom),確立未來醫材監管方向。本次諮詢收到將盡900件回應(民眾與業者大約各半),結果顯示民眾業者對於強化醫療器材安全監管的支持。 MHRA將強化MHRA的執法權力,以確保病患安全,並且關注健康不平等議題並減少AI偏見問題;其監管設計上會考量歐盟和全球標準,並致力於建立英國符合性評鑑(UK Conformity Assessed, UKCA)。MHRA於安全方面,將增加製造商、進口商與經銷商的責任,並要求有英國地址的負責人對瑕疵商品負擔法律責任(構成法律責任的要件與製造商同)。其亦將要求製造商賠償被不良事件影響的人、禁止行銷上使用引人錯誤之表示、導入醫材之單一識別碼(Unique Device Identifiers, UDI)與增加註冊所需提供之資料,且製造商須建置上市後不良反應監測系統並回報統計上顯著的不良事件趨勢。創新方面,MHRA欲增設「創新醫療器材上市管道」和「軟體醫材上市管道」,以顧及創新與軟體醫材特殊需求。針對一般軟體醫材(software as a medical device, SaMD)與人工智慧軟體醫材(AI as a medical device, AIaMD)的監管,MHRA僅欲於法規中增加「軟體」的定義,其他規範將由指引的形式公布。此外,其將AIaMD視為SaMD的一種,並不會額外訂定AIaMD相關規範。
美國政府管考辦公室提出醫療產業資訊化政策評價報告美國之政府管考辦公室( Government Accountability Office )針對聯邦政府推動醫療產業導入資訊應用之相關措施及作為,九月初向參議院政府再造委員會( Committee on Government Reform, House of Representatives )下轄之聯邦人事暨組織次委員會( the Subcommittee on Federal Workforce and Agency Organization )提出報告,綜合回顧 2004 以來之各項政策宣示及執行規劃,指出目前猶有未足之處以及今後適宜更加留意之方向。 簡言之,醫療產業導入資訊應用,可望帶來降低營運成本,提升經營效率,防免發生過誤,維護病患安全等諸多實益,已為各界所共認。另由於聯邦政府介入醫療產業之程度與影響層面既深且廣,不僅本諸規制角度主管產業,更推動諸多施政,投入大量資金,提供老人、傷殘、兒童、低收入戶、原住民、退伍軍人、退休公職人員等不同社會族群各式相關服務,從而責成聯邦政府領銜推動醫療產業導入資訊應用,藉此提升醫療之品質及效率,應屬妥適。 自 2004 年提出行動綱領以降,聯邦政府即已陸續接櫫各項目標及其實施策略,並區分病歷資料格式、傳輸互通標準、網路基礎架構、隱私安全議題、公衛服務整合等面向分別開展,獲致相當成效。惟據管考辦公室之分析,既有之政策措施及各項作為,似乏詳盡之細部規劃及具體之實踐要項可資遵循,亦無妥善之績效評比指標以利參考。由是觀之,迄今之努力及其成果固值稱許,然就 2014 年普遍採用電子病歷並且得以交流互通之願景而言,還有很多需要努力的地方。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告2023年5、6月經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD)在邁向數位化計畫(Going digital Project)下陸續公布53個國家地區科學技術創新政策(science, technology and innovation policy)指標。OECD另一方面也提供許多政策工具供各政府參考,如2022年12月發布《數位化推進資料治理以促進增長和福祉》(Going Digital to Advance Data Governance for Growth and Well-being),並出版《資料治理政策制定之數位化指南》(Going Digital Guide to Data Governance Policy Making),協助應對轉型為數位治理時的潛在益處與風險。 《數位化推進資料治理以促進增長和福祉》指出,數位工具發展使資料蒐集、處理的效能大幅增加,邊際成本快速下降,為經濟、社會注入新驅動力。OECD觀察到COVID-19疫情危機中,各國政府藉多樣的資料有效追蹤疾病並做出相應對策;然而,也出現資料治理不當案例,如有勞動中介機構不慎在資料應用時加深性別勞動的不平等。因此,資料成為治理的戰略資產同時也需詳加了解資料多樣化的特性,在資料跨領域產製、流通與利用的過程中一併考量其益處與風險。 《資料治理政策制定之數位化指南》則點出三個發現,並提供相應策略做為各國政府治理參考。第一,關切資料開放同步產生的益處與風險,建議應確立風險管理的文化並建置透明且開放的資料生態系,以增加使用者的能動性,俾利人們自覺主動利用資料。其次,治理框架應平衡生態系中利害交疊的人民、企業團體、政府各部門等,藉契約範本、行為準則等機制確保決策各環節中利害關係人的參與機會和框架的一致性。第三,資料的邊際成本雖一再降低,然而進入門檻、後續管理的負擔仍重,政府應持續激勵資料的基礎建設投資,促進市場競爭並解決後進者的阻礙。