美國聯邦巡迴法院針對標準必要專利合理授權金提出判斷標準

  2015年12月3日美國聯邦巡迴上訴法院(CAFC)對澳洲科學暨工業研發組織(CSIRO)控告美國網路設備大廠思科系統(Cisco Systems)所製造與販賣的IEEE 802.11a、802.11g、802.11n侵害其美國第5,487,069 號專利(以下簡稱系爭專利)一案撤銷原判決並發回重審。

其爭點在於:
1. Cisco主張區法院未採用標準必要專利慣用之最小可銷售專利實施單位(smallest salable patent-practicing unit)作為合理授權金計算基礎。
2. 區法院法官未審酌系爭專利納入標準化的情形及未就Georgia-Pacific 15項分析要素進行修改。
3. 區法院未適當考慮CSIRO與Radiata間的技術授權協議。

CAFC將本案撤銷發回重審,其理由如下:

1.本案不適用最小可銷售專利實施單位

  CAFC認為最小可銷售專利實施單位非唯一的計算合理授權金的計算方式,故仍應考量個案不同而採不同的計算方式;其重點在於應將系爭專利與非系爭專利之技術特徵價值進行適當的區分,比較過去實際授權個案,判定系爭專利技術特徵在整體產品中的價值比例,確保權利金計算的正確性。

2.針對標準化專利應考量系爭專利受標準化的情況

  依據美國專利法第284條規定,系爭專利自身的價值應與標準化後所生的附加價值加以區別,使其僅反映系爭專利為系爭侵權產品所帶來的價值。而原審法院計算系爭專利的合理授權金時,並未排除其他無關的技術特徵及區分系爭專利標準化後所帶來的附加價值。

3. 應審酌CSIRO與Radiata間的技術授權協議

  Radiata為CSIRO為進行專利商品化而成立之子公司,後Radiata於2001年為Cisco所併購,並仍依據CSIRO與Radiata間的技術授權協議以每單位晶片產品為基礎授權金的計算方式,故其時間與區法院以假設性協商之可能發生時間點相同,故區法院未加以考慮乃係明顯錯誤。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國聯邦巡迴法院針對標準必要專利合理授權金提出判斷標準, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7107&no=67&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
政府科研計畫執行與貪污犯罪

新創及中小企業如何因應美國之《訴訟透明法案》

今年7月,美國國會議員Issa提出了《2024年訴訟透明法案》(H.R. 9922, the Litigation Transparency Act of 2024,下稱《訴訟透明法案》),要求當事人揭露民事訴訟中所取得之金融支援的來源,如商業貸款機構等,以提高訴訟透明度並降低濫訴之情形,惟此提案恐導致美國新創及中小企業更難成功起訴竊取其專屬技術之大企業。 近年來,許多大型科技公司從較小的競爭對手竊取其專屬技術,然而僅有少數案例成功取得賠償金,如:伊利諾州地方法院要求Amazon向軟體公司Kove IO支付5.25億美元的賠償金等。這是由於新創及中小企業縱有證據證明其智慧財產權被盜,在訴訟中多面臨沒有足夠資力與大型科技公司抗衡之窘境,因此往往被迫接受遠低於其所受損失之和解金。透過這種方式,大型科技公司能掌握技術並支付低於取得該技術授權所需之成本,因此被稱之為「有效侵權(efficient infringement)」。 新創及中小企業近期透過與第三方金融資助者協議共享訴訟取得之賠償等方式,降低其進入訴訟程序的經濟門檻,以對抗大型科技公司所採取之「有效侵權」。然而最近一系列案例顯示,中國大陸所支持的第三方金融資助者助長了針對美國企業之智財訴訟,引發了國家安全問題,故立法者為降低營業秘密被外國競爭對手取得之風險、避免無意義之訴訟被廣泛提起,要求當事人揭露其於民事訴訟中所取得之金融支援來源。若《訴訟透明法案》通過,原告所採取之法律策略將可能外洩,而第三方金融資助者亦將受到各方之抨擊,進而導致新創及中小企業在訴訟中更難取得金融支援。 綜上所述,若要降低訴訟之可能性,新創及中小企業須強化其對於專屬技術之保護,從根本減少專屬技術洩露之風險,以避免訴訟發生或進入後端訴訟。有鑑於新創及中小企業與大企業相比,在智財保護觀念上更接近學研單位,且對於營業秘密之管理多未臻完備,因此為確保其能有效落實對營業秘密之管控,建議新創及中小企業可參考智慧局所發布之《學研機構營業秘密管理實作要領》,量身訂作符合自身需求的營業秘密管理制度,並循序完善相應之營業秘密管理措施,以降低專屬技術被竊取的風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

日本閣議公布建築節能法修正案

  2019年2月15日閣議公布《建築物能源使用效率提升法》(建築物のエネルギー消費性能の向上に関する法律,以下稱「建築節能法」)的修正案,將根據住宅及建築物的規模、用途等特性,採取高效性綜合對策,以達到2030年節能目標。   本次《建築節能法》主要修正內容,包含: 非住宅之建築物(如商辦大樓):原針對新建、改建、擴建大規模(樓地板面積2000m2以上)建築物應符合「建築物能源使用效率基準」(建築物エネルギー消費性能基準)之強制規定,將擴及中規模(樓地板面積300m2~2000m2)建築物。另外,新增若複數建築物共同執行的「提升建築物能源使用效率計畫」,經當地相關主管機關認定後,可獲得容積獎勵之規定。 改善大型集合住宅審查制度:針對建築物起造人及承造人須向當地相關主管機關提交「確保建築物能源使用效率的構造與設備計畫」的審查制度,將簡化審查程序,以減少行政機關負擔及提高行政效率。 建築師及住宅業者之義務: (1) 新增設計小規模(樓地板面積不到300m2)建築物的建築師有義務向建築物起造人及承造人,說明該物件的能源使用效率。 (2) 住宅Top Runner制度:原規範大型住宅業者供給之建案獨棟住宅應符合住宅Top Runner基準,現將物件範圍擴及客製化獨棟住宅及小型出租公寓。

因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP