美國食品及藥物管理局(the U.S. Food and Drug Administration)於2019年1月更新「軟體預驗證計畫(Software Precertification Program)」及公布該計畫「2019測試方案(2019 Test Plan)」與「運作模式初版(A Working Model v1.0)」,使審查流程更加明確及具有彈性,並促進技術創新發展。 在更新計畫中,FDA聚焦於審查架構的說明,包含考量納入醫療器材新審查途徑(De Novo pathway)及優良評估流程(Excellence Appraisal process)的審查內涵。在優良評估流程中,相關研發人員須先行提供必要資訊,以供主管機關驗證該軟體器材之確效(validation)及是否已符合現行優良製造規範(current good manufacturing practices)與品質系統規範(Quality System Regulation, QSR)的要求。而由於以上標準已在此程序中先行驗證,主管機關得簡化上市前審查的相關查證程序,並加速查驗流程。 在測試方案中,則說明FDA將同時對同一軟體器材進行軟體預驗證審查及傳統審查,並比較兩種途徑的結果,以確保軟體預驗證審查途徑中的每一個程序都可以有效評估產品上市前所應符合的必要標準。最後,FDA綜合軟體預驗證計畫及測試方案,提出「運作模式初版」,以協助相關人員了解現行的規範架構與處理程序,並期待藉此促進技術開發者及主管機關間的溝通。FDA並於運作模式文件中提到,將在2019年3月8日前持續接受相關人員的建議,而未來將參酌建議調整計畫內容。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
德國聯邦內政部公布《資訊科技安全法草案》 歐盟《非歐盟國家智財權保護與執法成效報告》歐盟執委會於2020年1月8日發布《非歐盟國家智財權保護與執法成效報告》(Report on the protection and enforcement of intellectual property rights in third countries)。該報告自2006年起,每兩年出版一次,主要目的為確定特定非歐盟國家中智財權之保護與執法狀況,並列出每兩年的「優先關注國」(priority countries)清單。報告中亦說明,所謂「優先關注國」是對歐盟智財利益造成最大侵害的國家,而非指全球中智財保護狀況最有問題的國家。 本次報告臚列的國家中,中國為最需關注的第一級國家;第二級為印度、印尼、俄羅斯等;第三級則是阿根廷、巴西、馬來西亞、泰國、沙烏地阿拉伯等國。報告提到中國是歐盟境內仿冒品與盜版貨物的主要來源。在歐盟海關扣押的仿冒品與盜版貨物中,有百分之八十以上來自中國和香港。第二類優先國家,其智財保護與執法存在系統性問題,且問題解決上進度緩慢。而第三類優先國家智財領域表現上也有類似問題,僅在嚴重性和數量低於第二級優先國家。其中,沙烏地阿拉伯為今年新增為優先關注國家,研究報告指出該國常被作為中轉國家,傳輸歐盟境內仿冒與盜版貨物。 報告中亦提到上述國家共同問題,包含: 強制性技術轉讓策略(特別是中國)不利於外國產業(尤其是高科技產業)投資,使外國產業失去競爭優勢; 海關執法情形不一,往往沒有依職權採取人身拘提、扣押、銷燬仿冒及盜版貨物,或是未對運輸中的盜版貨品依法採取行動; 仿冒和盜版商品通常不會被執法部門直接銷燬,甚至會回到市場; 智財侵權罰則上,許多國家的懲罰過輕,無法造成威懾作用。 因缺乏執法政治意願和資源,使國家智財權執法情況薄弱,也導致技術基礎設施、人力資源、專業能力,甚或司法、行政以及一般公眾對智財權價值認識不足。