美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
雲端運算所涉法律議題雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。 雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。 「雲端運算」供應模式以及實用定義如下: ‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。 ‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。 ‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。 雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。
2022年日本公布平台資料處理規則實務指引1.0版日本數位廳(デジタル庁)與內閣府智慧財產戰略推進事務局(内閣府知的財産戦略推進事務局)於2022年3月4日公布「平台資料處理規則實務指引1.0版」(プラットフォームにおけるデータ取扱いルールの実装ガイダンス ver1.0,簡稱本指引)。建構整合資料提供服務的平台,將可活用各種資料,並創造新價值(如提供個人化的進階服務、分析衡量政策效果等),為使平台充分發揮功能,本指引提出平台實施資料處理規則的六大步驟: 識別資料應用價值創造流程與確認平台角色:掌握從產生資料,到分析資料創造使用價值,再進一步提供解決方案的資料應用價值創造流程,以確認平台在此流程中扮演的角色。 識別風險:掌握利害關係人(如資料提供者與使用者等)顧慮的風險(如資料未妥適處理、遭到目的外使用等疑慮)。 決定風險應對方針:針對掌握的風險,決定規避、降低、轉嫁與包容等應對方針。 設定平台資料處理政策與對利害關係人說明之責任(アカウンタビリティ):考量資料處理政策定位,擬定內容,並向利害關係人進行說明。 設計平台使用條款:依據「PDCA循環」重複執行規則設計、運作與評估,設計平台使用條款。 持續進行環境分析與更新規則:持續分析內部與外部因素可能面臨的新風險,並更新平台資料處理規則。
在美國競業禁止修法趨勢下,雇主可採取的配套措施——–不可避免揭露原則?美國聯邦貿易委員會(Federal Trade Commission, FTC)於2023年1月提出一項提案,將使所有競業禁止條款無效,惟提案尚未確定。儘管FTC同意該提案將影響對雇主的保護,但也指出營業秘密法已為雇主提供了保護其營業秘密的配套,其中「不可避免揭露原則」(the “inevitable disclosure” doctrine)或許將成為競業禁止協議之替代方案。 不可避免揭露原則是指當公司認為前僱員於新公司任職,將不可避免地使用前公司之營業秘密時,可向法院聲請禁止前僱員至新公司任職。法院通常會考慮下列三個因素,以決定是否基於不當使用營業秘密之「威脅」而授予禁制令救濟,包括: 1.前後雇主是否為提供相同或非常相似服務的直接競爭對手; 2.前僱員的新職位是否與原職位雷同,以至於無法合理地期待該僱員在不利用其前雇主之營業秘密的情況下,能履行其新的工作職責; 3.所涉及的營業秘密對於前後雇主是否都具有相當之價值。 雖然部份州法院指出根據其州法,得適用不可避免揭露原則,但各界對於雇主能否向聯邦法院根據《保護營業秘密法》(Defend Trade Secrets Act, DTSA)援引該原則仍未達成共識。儘管如此,部份聯邦法院強調雇主須明確說明前僱員為何將不可避免地使用或揭露其營業秘密,僅證明前僱員在工作期間獲得機密資訊,並隨後於競爭公司擔任類似職位,不足以證明前僱員將不可避免地使用前公司之營業秘密。 綜上所述,不可避免揭露原則可以防止前僱員不當使用其營業秘密的威脅,但由於聯邦法院對於能否援引該原則的標準仍不明確,僅指出不可避免揭露原則將使雇主面臨較高的舉證要求,故其是否能成為競業禁止協議的替代方案,仍有待觀察。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。