德國聯邦法院(簡稱:BGH)民事庭於2015/11/26分別在兩件案例中(I ZR 3/14 和 I ZR 174/14)針對網路服務提供者(ISP)責任作出具重大影響力之終審決定。BGH認為即使此侵權網站之內容可在別處被找到,原則上德國ISP仍可阻斷侵權網站之連接。兩案分別由德國音樂集管團體GEMA對德國電信(I ZR 3/14),以及華納、新力、聯合音樂共同對一德國私人電信公司Telefonica O2所提起 (I ZR 174/14),聲明請求法院命令網路連接業者切斷對侵權網站之連接。兩案原告等之聲明分別在一審與上訴審皆被駁回,於是分別上告(Revision)至BGH。
BGH於判決中指出,雖不排除ISP可阻斷對侵權網站之連接可能性,然先決條件在於著作權人需先盡合理的努力(Zumutbaren Anstrenungen),去阻止被保護內容之擴散。而兩案中原告等未盡此義務,故以此為理由駁回上告。BGH課予著作權人盡合理的努力後,才能訴諸此切斷侵權網站連接之最終手段,此可為我國處理網路服務提供者(ISP)之第三人侵權行為責任之參考。
2024年3月6日,南韓個資保護委員會(Personal Information Protection Commission, PIPC)宣布通過個人資料保護法施行法(Enforcement Decree of the Personal Information Protection Act, PIPA Enforcement Decree)修正案,並於2024年3月15日正式實行。 本次修法重點如下: 1.明訂個資主體可要求公開自動化決策過程之權利及應對不利結果時可採取之措施 針對使用AI等自動化系統處理個資並做出的自動化決策,個資主體(即,個人)有權要求解釋決策過程並進行審查,尤其當決策結果對個資主體權益有重大影響時(例如:不通過其社福補助申請),個資主體可拒絕自動化決策結果,並要求改為人為決策及告知重新決策結果。另為確保透明、公平,自動化決策依據的標準與程序亦須公開,並於必要時向公眾說明決策過程。 2.確立隱私長(Chief Privacy Officers, CPOs)的資格要求及適用範圍 為確保CPO能順利開展個資保護工作,要求處理大量或敏感個資機關之CPO至少具有4年個資、資安相關經驗,且個資經驗至少2年。適用機關包括:年營業額達1,500億韓元以上、處理超過100萬人個資或超過5萬人特種資料者;學生超過2萬人的大學;處理大量特種個資的教學醫院或大型私人醫院等;疾管局、社福、交通、環保等公共系統運營機構。 3.明訂評估公共機構個資保護效能之標準及程序 依據個資法第11-2條規定,PIPC每年需對公共機構(如:中央行政機關及其所屬機關、地方政府及總統令規定者)進行個資保護程度評估,而為使評估作業有所依循,本次新增評估標準及相關程序包括:政策和業務表現及其改進情形、管理體系適當性、保護個資措施及執行情形、防範個資侵害及確保安全性措施及執行情形等。 4.調整需要承擔損害賠償責任的適用範圍及門檻 為確保機關履行個資主體損害賠償責任,將需履行投保保險等義務之適用範圍由網路業者擴大至實體店面及公共機構等。同時,調整適用門檻,將年銷售額由5千萬韓元調整為10億韓元、個資主體數由1千人調整為1萬人,以減輕小型企業負擔。另亦明訂可豁免責任的對象包括:不符合CPO資格的公共機構,公益法人或非營利組織,及已委託給已投保保險之專業機構的小型企業。 PIPC另將公布一份指引草案,內容包括自動決策權利、CPO資格要求、公共機構個資保護評估標準、賠償責任保障制度等,並舉行說明會來收集回饋意見。
美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。 《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括: 1.對決策過程進行描述,比較分析其利益、需求與預期用途; 2.識別並描述與利害關係人之協商及其建議; 3.對隱私風險和加強措施,進行持續性測試與評估; 4.記錄方法、指標、合適資料集以及成功執行之條件; 5.對執行測試和部署條件,進行持續性測試與評估(含不同群體); 6.對代理商提供風險和實踐方式之支援與培訓; 7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款; 8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄; 9.自透明度的角度評估消費者之權利; 10.以結構化方式識別可能的不利影響,並評估緩解策略; 11.描述開發、測試和部署過程之紀錄; 12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源; 13.無法遵守上述任一項要求者,應附理由說明之; 14.執行並記錄其他FTC 認為合適的研究和評估。 當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。
美國交通部提出自駕車全面性計畫,以促進自動駕駛系統規範環境之整合、透明性與現代化美國聯邦運輸部(US Department of Transportation)於2021年1月11日發布「自駕車全面性計畫(Automated Vehicles Comprehensive Plan, AVCP)」,建立了交通部促進合作、透明性與管制環境現代化,並將自動駕駛系統(Automated Driving Systems)安全整合入交通系統之策略。基於過去「自駕車政策4.0」建立之原則上,自駕車全面性計畫定義了三個目標以達成其願景: 促進合作與透明性:交通部將會促進其合作單位與利益相關人可取得清楚且可靠之資訊,包含自駕系統的能力與限制。 使管制環境現代化:交通部將會現代化相關規範並移除對創新車輛設計、特性與運作模組之不必要障礙,並發展專注於安全性之框架與工作以評估自駕車技術的安全表現。 運輸系統之整備:交通部將會與利害相關人合作實施安全的評估與整合自駕系統於運輸系統之基礎研究與行動,並促進安全性、效率與可取得性。 政策文件中也就相關目標提出了關鍵目的以及行動,包含先前交通部所提出的「自駕系統安全性框架(Framework for Automated Driving System Safety)」草案,將透過建立框架定義、評估並提供自駕系統的安全性需求,並同時保留創新發展之彈性;另外此政策文件也提出了如何將自駕系統融合現有技術應用之實際案例。交通部將會定期的檢視相關行動與計畫,以反應技術與產業發展,並減少重複性之行動,並將資源投注於重要領域。
何謂「阿西洛馬人工智慧原則」?所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。 該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。 其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。