日本推動智慧醫療照護與巨量資料應用之趨勢觀察

刊登期別
第27卷第12期
 
隸屬計畫成果
經濟部技術處產業科技創新之法制建構計畫成果
 

※ 日本推動智慧醫療照護與巨量資料應用之趨勢觀察, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7171&no=0&tp=1 (最後瀏覽日:2025/10/07)
引註此篇文章
你可能還會想看
韓國以「生成式人工智慧著作權指引」提醒著作權侵權風險

韓國以「生成式人工智慧著作權指引」提醒著作權侵權風險 資訊工業策進會科技法律研究所 2024年05月15日 創作內容的流通利用是發揮文化經濟力的核心關鍵,但大數據和機器學習技術的快速發展,人工智慧(以下簡稱AI)已成功應用於許多內容生成,大幅推進圖像、影音、文本的識別、處理、分析、甚至生成等創作成本,但從實現生成式AI而建立基礎模型開始,到AI產出物的生成,均存在可能侵權或被侵權的風險。如何衡平考慮著作權人和使用者立場,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統,已成為各國必須思考因應重要課題。 壹、事件摘要 韓國文化體育觀光部的著作權委員會於2024-01-16發布「生成式人工智慧著作權指引(생성형 AI저작권안내서)」[1],這份指引的目的是希望對涉及生成式人工智慧(Generative AI)產出過程中的各方(AI業者、著作權人、AI使用者)提供有關著作權的注意事項。因為韓國文化與著作權主管機關認為,雖然隨著人工智慧技術的迅速發展,在各個領域的應用為經濟和社會利益產生許多助益,但也出現了一個無法預測的環境,影響到著作權產業和創作活動的各個方面;有人將生成式AI用作創作工具,同時也有人擔心生成式AI可能帶來的經濟損失和就業威脅等問題。因此,韓國著作權委員會成立了由學界、法界和技術界專家以及利害關係人組成的「AI-著作權制度改善工作小組」,於2023年2月成立,以審查生成式AI引發的著作權問題並尋找應對方法,並根據該工作小組的討論而編寫提出該指引[2]。 貳、重點說明 該指引從實現生成式AI而建立基礎模型開始,到AI產出物的生成,聚焦於可能引發法律爭議的數據學習和AI產出物生成部分,從現行著作權法的角度說明AI業者、著作權人和AI使用者需要了解的內容。同時為幫助理解,亦納入介紹目前提供的生成式AI案例以及相關的國內外立法趨勢。但該指引特別說明其發布並非為提供其國會正在討論的著作權法修訂方向,而是為了在未來通過進一步的討論、研究和意見徵求過程等,制定出合理的解決方案,並透過制定衡平考慮著作權人和使用者立場的著作權法律制度,促進人工智慧技術發展和相關產業發展,同時努力營造尊重人類創作活動的著作權生態系統[3]。 該指引架構主要分為五大主題[4],同時提供問答集與附錄參考資料。五大主題分別為: 一、生成式AI技術與著作權(생성형 AI 기술과 저작권)[5]:從著作權角度看生成式AI技術,說明生成式AI技術的意義和應用案例。 二、對AI經營者的指導(AI 사업자에 대한 안내사항)[6]:包括生成式AI的學習階段的風險、AI產出物的生成階段的風險、建議採取防範措施以區別AI產出物與人類創作物。例如人工智慧業務經營者在提供相關服務時,確保不會產生與現有作品相同或相似的人工智慧輸出;該指引並建議參酌韓國2023 年 5 月提出的《內容產業振興法》修正提案(法案編號2122180)[7]規定,於人工智慧產出內容中應標示係採用人工智慧技術製作[8]。 三、對著作權所有人的指導(저작권자에 대한 안내사항)[9]:在AI學習階段應考慮的事項、防止AI產出物侵犯著作權的建議。該指引特別建議如果著作權人不希望其作品用於人工智慧學習,可以透過適當方式表達反對,以防止作品被用於人工智慧學習;即使著作權人後來得知自己的作品被用於人工智慧學習,亦可適當地採取技術手段來防止,以避免放任使用產生默許的問題。包括使用例如“Glaze”、“Photo Guard”等此類新的防止技術。 四、對AI使用者的指導(AI 이용자에 대한 안내사항)[10]:提醒注意生成式AI使用可能涉及的著作權侵犯情況,並說明在研究、教育、創作等領域的倫理和政策考慮。例如,提醒使用者將現有作品原樣輸入提示視窗或輸入誘導創作相同或相似作品的文字,從而創建與現有作品相同或相似的人工智慧輸出,然後將其發佈到平台上的方法,將存有侵權風險。即使是用人工智慧學習歌手聲音而重新創作或產生現有歌手的歌曲,也會涉及重製或輸入侵權資料的疑慮。同時,對學術研究或投稿,該指引特別建議在論文等中引用生成人工智慧撰寫的文章之前檢查其來源,並標註特定段落是以什麼人工智慧工具與指令所生成。 五、AI產出的著作權登記(AI 산출물과 저작권 등록)[11]:與AI產出物相關的著作權爭議、AI產出物是否可以登記著作權、有關AI產出物著作權登記的國內外案例、登記時應注意的事項等。該指引強調對於不能被視為在任何表達行為中做出人類創造性貢獻的人工智慧輸出,不可能進行著作權註冊。但在人類以創意方式進行修改、增加等“額外附加工作”(추가 작업)的情況下,該額外工作的部分才會被認定為具有著作權屬性,可以進行著作權登記。但是,著作權註冊的效果僅限於附加的部分(추가 작업한 부분)[12]。 另該指引在問答集中主要釋疑相關疑義,例如:為什麼AI的學習會涉及著作權問題?如果無法確定AI學習所使用的作品的權利人,AI業者如何獲得合法使用權?個別提示用於製作AI產出物也受著作權保護嗎?AI產出物是否無法受到著作權法保護?等等韓國文化與著作權主管機關認為常見或已出現爭議的案例,並依其現行法令或見解趨勢,提供主管機關的看法或解答。 此外,為協助其讀者更深入了解人工智慧的原理、爭議與國際發展趨勢,該指引並精要的整理出下述主題,包括:使用人工神經網絡進行學習的過程、生成式AI相關訴訟和著作權爭議、國內外AI相關應對情況、國內廣播公司和新聞機構有關AI學習資料取得的政策條款等補充明,做為該手冊的附錄資料。特別是其所整理之政策條款,顯示韓國新聞媒體已著手因應被用於AI訓練、學習與內容產生的風險。 參、事件評析 綜觀韓國文化體育觀光部的著作權委員會發布「生成式人工智慧著作權指引」可以看出,韓國認為生成式人工智慧在文創領域的議題,目前較為迫切需要處理的是創作人的著作權於AI訓練時被侵權,與創作時運用AI的侵害他人權利的風險,以及AI生成內容的識別與可保護範圍的界定,但促進人工智慧技術發展和相關產業發展,均為韓國關切議題;AI在未來如何衡平考慮著作權人和使用者立場尚待研析建立共識並透過國會立法修正著作權法律制度。 因此,該手冊除提供AI的技術背景說明外,並強調該指引並非修法政策的官方說明,同時以如何降低風險與維護權益的角度,提醒生成式人工智慧(Generative AI)產出過程中的AI經營者、著作權人、AI使用者,提供有關著作權的注意事項與例如防制技術運用、標註AI生成等預防措施。同時為再進一步幫助理解,除風險說明外並以問答方式強化重點提示,並舉相關媒體的AI訓練資料提供政策實例供參考,內容本身精要但附錄細節說明詳盡,但對於未必了解著作權法令的文創領域從業人員而言,內容簡明且建議措施直接具體,值得我國主管機關訂定相關指引之參考。 [1]「生成型人工智慧著作權指引(생성형 AI저작권안내서)」,檔案下載https://www.copyright.or.kr/information-materials/publication/research-report/view.do?brdctsno=52591#(最後瀏覽日:2024/05/25)。 [2]詳前註指引之前言,頁6~7。 [3]同前註。 [4]其中尚有第六主題說明未來的法令整備規劃,此部分較屬政策措施方向,較非指引重點,故本文此處未予列入說明重點。 [5]同前註指引,頁7。 [6]同前註指引,頁15。 [7]去年5月,國會文化體育觀光委員會委員長李相憲提出了《內容產業振興法》的部分修正案,其中包括對人工智慧製作的內容強制貼上人工智慧標籤。該修正案目前正在國民議會審議中。https://www.4th.kr/news/articleView.html?idxno=2056520,(最後瀏覽日:2024/05/25)。 [8]同前註1指引,頁21。 [9]同前註1指引,頁23。 [10] 同前註1指引,頁29。 [11]同前註1指引,頁39。 [12]同前註1指引,頁41。

BS 10012:2017個人資訊管理系統新版標準已發布

  BS 10012:2009個人資訊管理系統近期轉版,英國標準協會已於2017年3月31日發布BS 10012:2017新版標準,此次修改主要係為遵循歐盟一般資料保護規則GDPR (General Data Protection Regulation )之規定。為了讓企業組織能更有效率整合內部已導入之多項標準,新標準採用ISO/IEC附錄SL之高階架構(High Level Structure),該架構為通用於各管理系統的規範框架。   2017新版架構由原本的6章變為為10章,新架構如下: 第1章 範圍 第2章 引用規範 第3章 專有名詞與定義 第4章 組織背景 第5章 領導統御 第6章 規劃 第7章 支援 第8章 營運 第9章 績效指標 第10章 改善   新標準主要修改內容如下: 個資盤點單需增加「法規」盤點項目,且應載明個資流向(軌跡紀錄)。 風險管理架構參酌ISO 31000:2009修改。 組織增設資料保護官(Data Protection Officer, DPO)。 個資蒐集、處理及利用: (1)蒐集前須先告知當事人並取得其同意。 (2)蒐集應有必要性且最小化。 (3)兒童個資蒐集、利用須先經監護人同意。 (4)若個資利用目的為開放資料(Open data)須作去識別化。 個資必須維持正確且最新。 個資保存不超過處理目的存在必要之期限(保存期限)。 增加個資完整性與機密性要求。 預先諮詢與授權,例如:網頁有使用cookies需明確告知瀏覽者。 個資管理目標與量測,包括欲導入範圍、現況評估等有效性目標。 增添文件管理規範。   BS 10012:2009版本將於2018年5月25日廢止,公司驗證轉版的過渡期為24個月,因此2019年3月未轉版者證書失效。

日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。   新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。   新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

美國網路安全暨基礎設施安全局(CISA)成立聯合網路防禦協作機制(Joint Cyber Defense Collaborative,JCDC),將領導推動國家網路聯防計畫

  美國網路安全暨基礎設施安全局(Cybersecurity and Infrastructure Security Agency,以下簡稱CISA)於2021年8月宣布成立聯合網路防禦協作機制(Joint Cyber Defense Collaborative,以下簡稱JCDC),依據《國防授權法》(National Defense Authorization Act of 2021, NDAA)所賦予的權限,匯集公私部門協力合作,以共同抵禦關鍵基礎設施的網路威脅,從而引領國家網路防禦計畫的制定。   聯合網路防禦協作辦公室(JCDC's office)將由具代表性的聯邦政府單位所組成,包括國土安全部(Department of Homeland Security, DHS)、司法部(Department of Justice, DOJ)、美國網路司令部(United States Cyber Command, USCYBERCOM)、國家安全局(National Security Agency, NSA)、聯邦調查局(Federal Bureau of Investigation, FBI)和國家情報總監辦公室(Office of the Director of National Intelligence, ODNI)。此外,JCDC將與自願參與的夥伴合作、協商,包括州、地方、部落和地區政府、資訊共享與分析組織和中心(ISAOs/ISACs),以及關鍵資訊系統的擁有者和營運商,以及其他私人企業實體等(例如:Microsoft、Amazon、google等服務提供商)。   目的在藉由這項新的合作機制,協調跨聯邦部門、各州地方政府、民間或組織等合作夥伴,來識別、防禦、檢測和應對涉及國家利益或關鍵基礎設施的惡意網路攻擊,尤其是勒索軟體,同時建立事件應變框架,進而提升國家整體資安防護和應變能力。   是以,JCDC此一新單位有以下特點: 具獨特的公私部門規劃要求和能力。 落實有效協調機制。 建立一套共同風險優先項目,並提供共享資訊。 制定、協調網路防禦計畫。 進行聯合演練和評估,以妥適衡量網路防禦行動的有效性。   而JCDC主要功能,整理如下: 全面、全國性的計畫,以處理穩定操作和事件期間的風險。 對情資進行分析,使公私合作夥伴間能採取應對風險的協調行動。 整合網路防禦能力,以保護國家的關鍵基礎設施。 確保網路防禦行動計畫具有適當性,以抵禦對方針對美國發動的網路攻擊。 計畫和合作的機動性,以滿足公私部門的網路防禦需求。 制度化的演練和評估,以持續衡量網路防禦計畫和能力的有效性。 與特定風險管理部門(Sector Risk Management Agencies, SRMAs)密切合作(例如:國土安全部-通訊部門、關鍵製造部門、資訊技術等),將其獨特專業知識用於量身定制計畫,以應對風險。

TOP