美國芝加哥地方法院於2016年01月04日肯認關於美國雅虎公司(Yahoo Inc)因於2013年3月對美國行動服務斯普林特公司(Sprint Corp)用戶散發垃圾訊息的團體訴訟。本件原為2014年由原告Rachel Johnson提訴,芝加哥地方法院法官Manish Shah認定本件原告已經充分主張本件團體訴訟的共通性,往後所有在2013年被發送該等訊息的用戶,都能加入本件訴訟集團提訴。而根據法院的文書資料,未來將會有超過50萬的斯普林特公司用戶能加入本件訴訟。
原告主張雅虎的簡訊服務向其以及其他斯普林特用戶寄發垃圾訊息而違反1991制定的電信消費者保護法(The Telecom Consumers Protection Act of 1991)。該等簡訊服務會將發信者的線上即時訊息轉為簡訊寄送至受信者的行動電話,同時系統會自動加入預設的「歡迎」訊息。依照電信消費者保護法規定,禁止以自動系統向使用者發送未得同意的簡訊、傳真或是撥打電話,違反者每一行為將被求償500~1500美元。因此本件若主張成立,雅虎將面臨每則訊息最高1500美元的損害賠償。
雅虎雖然主張該等訊息並非電信消費者保護法所禁止的擾人、極端巨量的通信,僅為對接收者已經收到來自其他發送者訊息的提醒而已。同時雅虎也主張若肯認該等團體訴訟,將導致損害賠償數額與原告所受損害不相當,而引發後續訴訟。法院並不接受雅虎的主張。現階段雅虎對法院的決定拒絕評論。
新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。
OTT影音發展與著作權-以英國為例 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
Google的下一步:行動廣告市場美國網路搜尋龍頭Google於2009年11月提出一項以7億5千萬美金收購行動廣告網絡商ADMob的計畫,大張旗鼓地準備涉足這個目前於所有廣告型態中,規模相對微小的區域。然而,美國二大消費者團體Consumer Watchdog及Center for Digital Democracy卻不認同這項收購計畫,甚至認為Google此舉將使其於行動廣告市場中形成獨占,以及甚有侵害消費者隱私權的可能,從而向聯邦交易委員會(Federal Trade Commission, FTC)喊話,要求FTC阻止Google此次的商業併購行為。 然而,消費者團體的擔憂亦非毫無道理,蓋Google在網路搜尋與線上廣告均有難以撼動的地位,而ADMob目前在行動廣告市場之佔有率亦為前茅,是故兩者一旦合併,消費者團體認為,Google此舉即是在為自己日後於此一極具發展潛力的市場中,先行買下一席位子。此外,由於GPS技術的發達,Google附加的Google Map定址應用更有可能因其實質跨足提供行動服務而有侵害使用人隱私權的可能。 雖言如此,FTC仍未明確表示對該項交易的意見,此外,無獨有偶地,蘋果電腦對行動廣告的市場亦開始有所行動,根據另一行動廣告服務提供者Quattro Wireless指出,蘋果公司正在計畫其中的細節。由此可見,不論FTC最後的結論為何,資訊業者之於行動廣告的戰爭已經開始。