德國專利商標局和中國大陸國家知識產權局延長了專利審查高速公路(PPH)試點項目之合作期限

  德中專利審查高速公路(The Patent Prosecution Highway,以下簡稱PPH)試點項目自2012年1月23日啟動,為期兩年,PPH的啟動將有助於協助企業在海外盡快取得專利權。申請人可在德國專利商標局(Das Deutsche Patent- und Markenamt Amt,以下簡稱DPMA)和中國大陸國家知識產權局(State Intellectual Property Office of the People's Republic of China,以下簡稱SIPO)提出專利加速審查的申請。爾後,德中PPH試點項目再於2014年1月23日起延長兩年。該項目原定於2016年1月22日終止,DPMA和SIPO進一步將試點項目延長兩年至2018年1月22日止。

  在德中PPH試點項目框架下,申請人可向DPMA或SIPO提出首次申請,一旦首次申請受理局(Office of First Filing,以下簡稱OFF)認為申請人提出的專利請求項中至少有一項被認定可能具有可專利性,則申請人可向後續申請受理局(Office of Second Filing,以下簡稱OSF)提出請求加速審查該申請案。而OSF將以OFF的初步檢索審查結果為基礎,進一步獨立執行專利審查。

  DPMA已長期與SIPO密切合作,並於2015年7月6日加入全球專利審查高速公路(Global Patent Prosecution Highway,以下簡稱GPPH),德國的專利申請案將能於加入GPPH的國家申請加速審查。目前包括DPMA在內共有21國專利局加入GPPH項目,與DPMA另外有PPH協議的合作專利局則有9個,德國加入GPPH後,既有的PPH協議將被GPPH取代。而SIPO目前尚未加入GPPH,與DPMA仍維持採行PPH協議。

相關連結
※ 德國專利商標局和中國大陸國家知識產權局延長了專利審查高速公路(PPH)試點項目之合作期限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7176&no=0&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
新加坡通過2010年版電子交易法施行細則

  繼新加坡2010年版本電子交易法(Electronic Transactions Act, ETA)於2010年7月1日式施行後,該國資通訊發展局(Info-communications Development Authority, IDA)因應修正電子交易法施行細則,該細則並於2010年11月1日起正式實施。其目的在使憑證機構管理制度得以配合新興資訊安全技術齊驅發展,進而使其與國際趨勢相符,修正要點如下:   1. 修正許可制為志願許可制:此次修正最大變革即在使該國憑證機構管理制度由原本的許可制,改為志願許可制。前者係使所有憑證機構均應向主管機關申請許可後,始能對外簽發憑證;而志願許可制則是原則上憑證機構對外簽發憑證無需主管機關許可,但憑證機構如果希望所簽發之憑證具備特定法律效果,則仍須經過許可。   2. 證據法上的推定效果:經過自願申請許可通過的憑證機構,經其所簽發之憑證而製作的數位簽章將有證據法上推定為真之效力,無待憑證用戶舉證即有其真實性,惟該真實性仍可由他方另舉反證推翻。換句話說,若數位簽章製作人使用的憑證為一般未經申請許可之憑證機構所簽發者,憑證用戶需先向法院提出其他輔助證據證明該簽章真實性。   3. 許可申請之要求:憑證機構自願申請許可時,應繳交申請費1千元新加坡幣(下同)及2年有效之許可執照費1千元。此外,新版施行細則統一整合舊有之「安全指導手冊」(Security Guideline)及其他各項稽核規定於「稽核需求要項表」(Compliance Audit Checklist),以供憑證機構得以更便利之方式了解並遵循共通之稽核程序。

歐盟傳統作物與基因改造農作物之共存門檻制度受到歐洲法院的挑戰

  歐洲法院(European Court of Justice)於2011年9月6日作出一項指標性的判決,係針對蜂蜜或食物補充品(Food Supplement)中,若其花粉成分受到基因改造作物之污染,則無論該污染是有意或無意所造成者,未經審核前均不得任意販售。據此,蜂蜜或食物補充品的生產者得就因不得販售所產生之損失向污染源或政府求償。   該案原為德國的養蜂人認為其生產之蜂蜜中的花粉受到鄰近距離五百公尺的基因改造農作物試驗之污染,而該試驗即為巴伐利亞政府所核准之基因改造農作物試驗(1998年EU核准的MON 801 maize),故而對巴伐利亞政府提出求償。原德國法院在不能確定蜂蜜是否涵蓋在基因改造規範的情況下,轉而尋求歐洲法院的判決。   該判決等於是挑戰歐盟現有的對於傳統作物及基因改造作物共存的政策與法規(GMO, Co-Existence),歐盟就該共存的門檻標準設定在0.9%,若產品含基因改造成分0.9%以上,需標示為基因改造產品,惟標示為基因改造食品對於傳統農作物之種植可能帶來銷售上的不利。而在共存門檻之下,含有基因改造成分的傳統農作物還是有可能因含有基因改造的成分而影響銷售並帶來損失;又因在共存門檻之下,作物含有基因改造成分是無法向政府或是來源求償的。另一方面,該判決亦影響出口蜂蜜至歐盟的國家,如大量生產蜂蜜且核准種植基因改造作物的阿根廷等國家。   對於基因改造食品採取保守態度的歐盟,近年來有意將是否禁止基因改造農作物以及共存門檻的比率下放給成員國自行決定,在成員國間形成兩極化的意見,而該項提案目前雖已經歐盟議會背書,但尚未由各成員國通過。這樣的判決令共存門檻的制度形同具文,且可能會使更多國家傾向禁止種植基因改造農作物,而不利於基因改造科技的研發。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

TOP