Google新搜尋服務引發著作權侵權爭議

  網路搜尋引擎的巨人 Google ,近來有一項計畫,即對圖書館中的書籍做掃瞄,然後讓使用者透過網際網路搜尋書籍的內容。由於 Google 計畫掃瞄供搜尋的書籍中,包括許多目前仍受到著作權保護的著作,因此 Google 此舉,是否造成對書籍著作權的侵害,便引發了相當的爭議。


  在近日的一個討論會中,學者、作者與出版商群聚一堂,就 Google 此一計畫的合法性進行討論,並就是否對 Google 進一步提出訴訟做討論。 Google 宣稱,此一計畫是人類知識發展的一大進步,把人類的觀念與想法,做有系統的歸類整理,並讓大眾更容易接近與使用,對於人類知識的傳播與進步,有重大貢獻。


  然而,作者與出版商方面,則認為
Google 此舉侵害的作者與出版商的著作權。就此,作者與出版商已做出回應。先前,美國出版商協會 (The Association of American Publishers, AAP) 已於 10 19 日對 Google 提起訴訟,希望經由法律的判決,認定 Google 的作法侵害著作權。從法律上來看, Google 此一計畫是否侵害著作權,確有爭議之處。從美國作者與出版商激烈的反應來看,將來有可能還會有其他的訴訟,甚至集體訴訟 (Class Action) 的產生,其後續效應,值得觀察。

相關連結
※ Google新搜尋服務引發著作權侵權爭議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=718&no=0&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
日本垃圾電郵法制2005年修正動態

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

日本印章制度與電子署名法修正

  日本國會於2021年2月9日正式提出「數位社會形成基本法草案」(デジタル社会形成基本法案),立法目的為提升國家競爭力、國民生活便利性,以建置一個「數位社會」,基本原則為降低數位落差,而降低數位落差之重要手段即包括日本印章制度之改革。   日本政府對印章制度之改革,可分為「取消蓋章制度」及「增加電子簽章使用率」二條路線。由於新冠疫情(COVID-19)影響全球工作型態,日本政府為推動電子化服務,考慮取消印章使用,因為其徒增商業活動成本,亦可能提升染疫風險。日本行政改革大臣河野太郎在2020年11月13日內閣會議後之記者會上即表示,約1萬5000種需要使用印章的行政服務中,絕大多數將取消蓋章制度。「數位社會形成基本法草案」亦預告將修改48部要求使用印章之法律,本草案及相關修法將於2021年9月正式通過施行。   電子簽章使用方面,日本在野黨聯盟於2020年6月提出「電子署名及認證業務法一部修正草案」(電子署名及び認証業務に関する法律の一部を改正する法律案)。依照現行規定,電子簽章須本人以一定方式簽署始可推定為真正,推定真正之條件過度嚴苛,便利性未優於實體蓋章,致使電子簽章使用普及度低落。本草案則降低推定門檻,僅須以特定電子方式簽署即有推定真正效力,使電子簽章簽署人身分驗證更為容易。目前法案仍在眾議院提案階段,尚未經國會表決通過,後續發展值得關注。

歐盟「未來工廠」發展計畫

  歐盟執行委員會依展望2020 (Horizon 2020)於2016年4月14日至15日召開未來工廠公私夥伴合作 (FoF cPPP)研討會,並展示目前資助的研究與創新成果,透過本計畫將協助歐盟內製造業,特別是中小企業,將資通訊及關鍵技術與整個工廠生產鏈結合,達到整體製造業升級。   計劃具體目標如下:(1)以資通訊技術為基礎的解決方案導入製造業生產過程,增加產品獨特性、多樣化、可大規模生產,及保有高度靈活性,以迅速反應瞬息萬變的市場。(2)縮短進入市場的研發製程,提升產品質量,並透過數位化設計、成型、模擬實作及預測分析,提升工作效率。(3)改善整合生產環境的人為因素。(4)透過現代資通訊基礎的生產技術使得資源、材料、能源更有持續性。(5)促進並強化製造領域的共同平台及其生態系統。(6)從獨特的地理位置創建虛擬價值鏈,從而善用優秀人才的潛力。   我國為整合新創能量,以創造製造業下一波成長動能,今年亦陸續公布「智慧機械產業推動方案」與「數位國家‧創新經濟發展方案」,以具高效率、高品質、高彈性等特徵之智慧生產線,透過雲端及網路與消費者快速連結,打造下世代工廠與聯網製造服務體系。

TOP