日本經濟產業省公布「再生能源導入促進關聯制度改革小委員會報告書」

  日本經濟產業省「促進再生能源關連制度改革小委員會(再生可能エネルギー導入促進関連制度改革小委員会)」於2016年2月5日公布了報告書,該報告書集結了自2015年9月以來,共計13次的討論整理,未來FIT制度改革方向,將以此為根基。

  提出該報告的目的在於,達成最加能源構成方案(エネルギーミックス)之目標,於2030年導入22-24%之再生能源,冀望在最大限度導入再生能源,並與抑制國民負擔之間調合並存。

  該報告提出五大修正制度方針,分別簡述如下:

(一)針對未運行案件對應修正認證制度
(1) 進一步加強撤銷認證制度之報告徵收及聽證程序。
(2) 創設新認證制度,應確認該發電事業的實施可能性後,才得認定為FIT。

(二)促進長期安定發電的配套措施
(1) 事業者應做適當的檢查及維修、發電量定期報告,制定廢棄及回收等應遵守事項。若有違反情事,主管機關得發出改善命令或是取消認定資格。
(2) 確認並遵守所涉及之土地使用條例、公告認定資訊、提供地方政府建構計畫內容。

(三)導入成本效率
(1) 設定中長期之「收購價格」目標。
(2) 以Top Runner等方式決定具備「成本效率」之收購價格,亦即以最佳方式選擇。
(3) 賦課金減免制度為一個可持續的機制,同時透過活用賦課金以確保基金,並確認對象事業的節能方案及對國際競爭力的影響等(檢討減免率)。

(四)擴大導入開發週期長(リードタイムの長い)之電力
(1) 開發週期較長之電力,預先於數年前決定認證案件之收購價格。
(2) 進行環評期間減半(通常為3~4年)等必要規制改革。
(3) 於FIT認證前,得申請接續系統。
(4) 針對不同電力的挑戰檢討對應的支援方法

(五)擴大導入電力系統改革之優勢
(1) 基於「廣域系統整備計畫」,計畫性地推動整備廣域系統。
(2) 對應區域系統之限制,公告系統資訊以及建設費用之單價。此外,繼續活用投標邀請規則(入札募集ルール),共同負擔系統升級費用。
(3) FIT收購義務人由零售事業者轉換為輸配電事業者,並促進全國區域間電力調配(広域融通)之順暢性。收購後之電力,得經由交易市場外直接輸送予零售事業者。
(4) 整備再生能源事業者間公平之輸出控制規則(公平な出力制御ルール)。

相關連結
※ 日本經濟產業省公布「再生能源導入促進關聯制度改革小委員會報告書」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7194&no=67&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
美國聯邦政府規劃專案計畫,推動機構建築能源效率政策目標

  去年(2011)十二月,歐巴馬總統簽署的備忘錄(Presidential Memorandum)中要求聯邦政府機構在未來的兩年間可以在建物能源效率的提升上,達成至少2億美元的目標,而在今年(2012)5月2日,各聯邦政府機構終於完成其第一階段的任務,也就是完成額度分配的任務,由農業部、商業部、國防部、司法部、能源部、國土安全局等各聯邦政府機構,共同參與並完成這2億目標額的分配。   在能源效率的提升計畫中,各機構預計簽訂總共約21億的成效式合約(performance-based contract),用以支付其改善能源效率上所需的經費,其中已完成超過1億美元節能績效保證契約(Energy Savings Performance Contracts ,ESPCs) 和節能服務契約(Utility Energy Savings Contracts ,UESCs)的簽訂,另外還有約12億美元的項目正在開發中,預計於2013年前完成所有21億美元契約的簽訂,以呼應總統要求強力發展能源效率氣勢。   節能績效保證契約是與ESCO(energy service company)簽訂的一種合約,合約中,聯邦政府不需要國會事先撥款支付資金成本予ESCO,而是由ESCO在經過諮詢後,擬定符合聯邦機構需求的節約能源計畫,並支付所需的資金支出,但是ESCO將會保證計畫中所節省下來的能源支出,足以支付契約期間內的支出並取得獲利為報酬,契約期間最長可達25年;節能服務契約則是供電業者提供更有效率的供電方式,並由業者編列資金來支付計畫的資金支出,而業者將會由契約期間內所節省來的電費獲得回報。   同時,在這些聯邦政府機構聯合領導下,60個主要企業的CEO、大學、市長和勞工領袖等皆代表不同單位,共同做出改善估計約1.6億平方英尺商業建物的能源效率,例如一些大型賣場正著手於改善他們的照明設備以及為他們的冷凍設備裝上門,一些醫院以及大學也意識到能源效率的改善將會為他們節省大筆的支出並且為病患或是學生提供更好的服務   除此之外,一些金融機構亦作出2億美元的資金承諾,由於能源效率改善的花費對一些私人機構而言,是一個主要的限制,因此花旗銀行以及一些金融服務業者以直接投入資金的方式,或是針對不動產所有權人的資金需求設計出相關的金融服務。   以上這些行動除了在於達成能源效率改善的目的,滿足歐巴馬總統設定於2020年前減少20%的能耗目標,重要的是同時也預計將創造出高達11萬4千個工作機會,這些都是歐巴馬政府於去年2月提出的「建物改善」(Better Building)倡議中的一部分,也屬於美國政府現在「刻不容緩」的政策執行重點(We Can’t Wait execution action)項目之一。

對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性

.Pindent{text-indent: 2em;} .Noindent{margin-left: 22px;} .NoPindent{text-indent: 2em; margin-left: 38px;} .No2indent{margin-left: 54px;} .No2Pindent{text-indent: 2em; margin-left: 54px} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性 資訊工業策進會科技法律研究所 2025年02月10日 由於生成式AI是根據使用者輸入的提示或稱指令(prompts),依機率分布推算生成出最有可能出現的結果,因此有人戲稱AI在每次生成時都是在隨機進行「擲骰子」,即便相同的提示也可能會得到有差異的輸出結果。為應對AI回應的不確定性和多樣性,如何下達提示,有效使用AI,為必須學習的課題。因此,有人說訓練不了人工智慧?我們可以訓練自己,但用心思考精準有效指令,費心對AI生成結果進行反復修改,就能取得著作權保護嗎?美國著作權局提出的看法,或許與大家的期待不同。 壹、事件摘要 美國著作權局今(2025)年1月發布AI著作權報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[1]。為幫助評估AI著作領域的立法或監管措施是否必要,該局於2023年8月即發布「著作權與人工智慧議題徵詢通知(Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence)」,對外尋求對包括涉及使用受著作權保護的作品來訓練AI模型的問題、適當的透明度與揭露程度受著作權保護的作品的使用以及AI生成內容的法律定位等問題的意見[2]。在分析AI引發的著作權法與政策問題的意見徵詢結果後,美國著作權局於2024年7月31日,以數位複製物(digital replicas)主題,發布「著作權與人工智慧分析人工智慧引發的著作權法和政策議題」(Copyright and Artificial Intelligence analyzes copyright law and policy issues raised by artificial intelligence)報告的第1部分[3],並隨後於今(2025)年1月發布報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[4]。 此報告指出現有的法律原則可根據個案判斷是否具有足夠的人為貢獻,有足夠的彈性足以解決關於AI生成內容是否具有著作權的問題,並不需要修法;當人工智慧被用作工具,且人類能夠決定作品的表達元素時,對AI生成結果的創意選擇、協調或安排,以及對生成結果的創意修改,都可獲得著作權保護;但目前使用者即使給予AI詳細的提示,也無法控制AI如何生成內容,不足以使其成為「作者」;著作保護仍須以人為創意投入,既有法令已足以激勵AI發展,沒有理由為AI生成的內容提供額外的著作權或特殊權利保護。 貳、重點說明 一、AI系統的輸出存在不可控制性[5] 當前生成式AI系統的輸出可能包括未指定的內容,在有數十億個參數的模型構建的複雜AI系統下,特定提示或其他輸入對於AI生成內容的影響存在不確定性,即使是專家研究人員在理解或預測特定模型行為的能力方面也受到限制。不僅AI生成的內容會因請求而異,而且即使具有相同的提示也是難以預測的,即使有AI系統例如Midjourney允許使用者控制生成一致的結果,在重複相同的提示時收到幾乎相同的圖像,然而即使如此也無法保證完美的一致性。 二、有辛勤努力、指示建議不等於有創造性貢獻 (一)無法僅因時間和努力而獲得著作權保護,它需要原創性 (originality),無論原創性有多麼低微 美國的著作權保護限於人類的創作(human authorship) 沒有任何法院承認非人類創造(non-human creation)的著作權。當然在使用AI的大多數情況下,人類將參與創作過程(creation process),並且在他們的貢獻符合創作資格的範圍時,能使其作品具有著作權。美國上訴法院(Supreme Court)明確表示,需要的是原創性 (originality),而不僅僅是時間和努力。在「Feist Publications, Inc. v. Rural Telephone Service Co.」案中,法院否定僅憑「血汗」(sweat of the brow)就足以獲得著作權保護的主張,但法院也認為絕大多數作品都很容易達到標準,因為所需的創造力水平極低;即使是很小的量、無論多麼粗糙、卑微或顯而易見都無妨(no matter how crude, humble or obvious’ it might be.)[6]。 (二)使用機器作為工具並不會否定著作權保護,如果作品已包含足夠的人類創作表達元素(human-authored expressive elements) 對於AI工具的使用是否影響著作權保護,美國著作權局提及在「Burrow-Giles Lithographic Co. v. Sarony」案中,法院將「作者」定義為「任何事物起源的人、創始人、製造者、完成科學或文學作品的人。(he to whom anything owes its origin; originator; maker; one who completes a work of science or literature.)」。法院確定了即使是使用照相機,攝影師也有許多創造性貢獻,包括將主題置於相機前,選擇和安排服裝、窗簾與其他各種配件、安排主題以呈現優雅的輪廓,以及喚起其所需的表情[7]。因此能否受保護的重點不在於有無使用工具,而是創造性投入的有無。 (三)「作者」必須是實際創作作品,即將想法轉化為有形呈現的表達的人,不包括只是提供詳細的建議和指示或做無實質改變轉換的人 美國著作權局在報告中指出,上訴法院在「Community for Creative Non-Violence v. Reid, "CCNV"」案中,認為:繪製設計草圖和以有形的表達媒介實現創意,使藝術家成為作者。該案的哥倫比亞特區巡迴法院明確表示,委託雕塑並提供詳細的建議與指示是不夠的,因為此類貢獻構成不受保護的想法,其不能因此成為雕塑的共同作者。而第三巡迴上訴法院在「Andrien v. Southern Ocean County Chamber of Commerce」案中, 認為原告「明確指示了副本的準備工作的具體細節」,因此「編譯只需要簡單的轉錄即可實現最終的有形形式」。因為印刷商「沒有實質改變原告的原始表達(original expression)」,法院裁定原告是「作者」[8]。 因此,該局認為儘管人工智慧生成內容不能被視為使用者與人工智慧系統的共同作品(joint work),但對於是否貢獻足夠的表達以被視為作者,提供有用的類比—僅僅向作者(AI)描述委託作品應該做什麼或看起來像什麼的人,並不是著作權法意義上的共同作者。 三、AI的創作輔助使用 美國著作權局同意,使用人工智慧作為輔助創作作品的工具與使用人工智慧作為人類創造力的替代品之間存在重要區別。雖然增強人類表達的輔助使用不會限制著作權保護,但認為需要進一步分析下列三種使用方式的差異: (1)指示人工智慧系統產生輸出的提示(prompts); (2)可以在人工智慧生成內容中感知到的表達性輸入(expressive inputs) (3)對人工智慧生成內容進行修改或安排(modifications or arrangements)。 (一)指示人工智慧系統產生輸出的提示(prompts) 由於欠缺對生成結果的控制能力,使用者即使輸入複雜的提示指令亦無法讓其成為「作者」[9]。提示本質上是傳達不受保護的思想,雖然高度詳細的提示可以包含使用者所需的表達元素,但目前的AI技術無法僅靠提示即能給予使用者足夠的人工控制,所以AI 系統的使用者無法成為生成內容的「作者」。雖然在輸入提示可以被視為類似於向受委託創作的藝術家提供指導,但在人與人之間的合作,委託者能夠監督、指導與理解受委託的人類藝術家的貢獻,但這情況目前不存在於人與AI的合作。或許將來可允許使用者對AI的生成內容取得完全的控制權,讓AI的貢獻變成固定或機械化(rote or mechanical)。 由於提示與結果輸出之間的差距,以及相同的提示可以生成多個不同生成內容的事實,進一步表明使用者缺乏對將他們想法轉換為固定表達的控制。而反覆修改提示不會改變、也無法為取得著作權提供足夠的依據,因為著作權保護的是作者身份,而不是辛勤工作。而且美國著作權局認為輸入修改後的提示與輸入單個提示在作用上似乎沒有實質性區別,對過程的控制程度都沒有改變。 不過,有些評論意見舉自然攝影作品做類比,認為即使攝影家無法控制野生動物何時進入畫面,這些作品也可能有資格獲得著作權保護。但美國著作權局認為,這與AI生成不同—攝影家的創作過程並沒有結束於他對作品的想法,其在照相機中控制角度、位置、速度和曝光的選擇,且可能進行作品的後製調修。該局指出「從(AI系統)提供的選項(生成結果)中進行選擇」不能被視為受著作權保護的作者身份, 因為「單一輸出的選擇本身並不是一種創造性的行為」。但該局也表示有時提示可以充分控制AI生成內容中的表達元素,如果AI技術進一步為使用者提供表達元素的更多控制,則結論可能會不同。 (二)富有表現力的輸入(Expressive Inputs)[10]與純粹指令不同 目前AI 系統接受以文本、圖像、音訊、視頻或這些內容形式的輸入,而可以將輸入保留成生成內容的一部分,例如修改或翻譯受著作權保護的作品。這類型的輸入,雖然亦可視為不同形式的提示,但與僅僅是傳達預期結果的提示不同。它所給的不僅是一個概念,更重要的是它限制了AI生成內容的「自主性」。因此可能提供了「更具說服力的人工干預」,而不是簡單的「將提示應用於未知的起點」。美國著作權局認為一個人輸入自己受著作權保護的作品,如果該作品在生成的內容中是可察覺的(perceptible),那麼他至少是該部分生成內容的「作者」。此類 AI 生成輸出的著作權將涵蓋可察覺的人類表達,包括可能涵蓋到作者對作品素材(material)的選擇、協調和安排。 (三)修改或安排(Arranging)AI生成的內容仍可受保護[11] 美國著作權局於報告中指出,使用 AI 生成內容通常是一個初始或中間步驟,如同其AI 註冊指引的說明—「人類可以以足夠創造性的方式選擇或安排 AI 生成的內容,以使最終作品整體構成一個作者的原創作品(the resulting work as a whole constitutes an original work of authorship)」。人類可以藉由修改AI生成的內容,使其達到符合著作權保護標準的程度,如果人類作者以創造性的方式選擇、協調和安排 AI 生成的內容,應該能夠主張著作權。例如:Midjourney 提供「Vary Region and Remix Prompting」,允許使用者使用提示來指定生成圖像的區域。美國著作權局認為此類可以讓使用者控制各個創意元素的選擇與放置的修改,是否達到最低原創性標準雖將取決於具體個案情況。但其認為就生成的內容位置可控制的案例,與純粹提示(prompts alone)情況不同,生成的內容應該受著作權保護。 參、事件評析 在美國著作權局公布其該報告之後,有網路媒體[12]以「美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有」的標題,詮釋該報告的主旨。確實美國著作權局於該報告中,特別指出下達複雜與反復的提示,並不會影響著作權保護的取得與否的判斷。但關鍵點不在於提示本身,而是對AI生成結果的「可控制」(或可說是AI對生成結果的自主)程度。 對於AI生成結果的著作權保護,經濟部智慧財產局曾以電子郵件1070420號函指出:「著作必須係以自然人或法人為權利義務主體的情形下,其所為的創作始有可能受到著作權的保護。據了解,AI(人工智慧)是指由人類製造出來的機器所表現出來的智慧成果,由於AI並非自然人或法人,其創作完成之智慧成果,非屬著作權法保護的著作,原則上無法享有著作權。但若其實驗成果係由自然人或法人具有創作的參與,機器人分析僅是『單純機械式的被操作』,則該成果之表達的著作權由該自然人或法人享有。」,但何謂「單純機械式的被操作」?以複雜與反復的提示再擇取AI符合所需的AI修改結果,是否屬之?在目前AI工具朝向「自動化」發展的趨勢下,使用者下達提示後,多只須被動的對單一的生成結果,決定是否接受或重新下達指令,使用者只是以指令提出需求,實際的「創作行為」主體其實是AI而非人類。因此,美國著作權局於此報告中更進一步的說明使用者即使有複雜與反復的提示且有意的選擇特定結果,並不能就認定為「對結果有控制權」的創作。必須其結果可為使用者主導、控制,而非被動決定是否接受。 相對而言,在創作的保護實務上,美國著作權局告訴我們的是,人類仍然可以藉由在使用過程提高對AI生成結果的控制程度,以及生成內容的後製,使結果符合著作權保護標準。AI使用者應該盡量使用有提供具體修改控制功能的AI工具,只要有人為的事後修改,或使用過程中能具體主導AI生成的結果,我們仍然可以透過複雜與反復的提示AI,取得受著作權保護的生成結果。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 2: Copyrightability, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-2-Copyrightability-Report.pdf [2]US Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last visited Feb. 10, 2025). [3]US Copyright Office, Copyright Office Releases Part 1 of Artificial Intelligence Report, Recommends Federal Digital Replica Law, https://www.copyright.gov/newsnet/2024/1048.html (last visited Feb. 10, 2025). [4]U.S. Copyright Office Copyright and Artificial Intelligence, supra note 1. [5]詳前註1,頁5~7。 [6]詳註1,頁8。 [7]詳註1,頁9。 [8]詳註1,頁9。 [9]詳註1,頁18~21。 [10]詳註1,頁22~24。 [11]詳註1,頁24~27。 [12]電腦王,美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有,https://www.techbang.com/posts/121184-the-us-copyright-office-has-set-the-tone-that-purely(最後瀏覽日:2025/02/10)。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

知己知彼,兩岸研發經費比一比

  依據本(2013)年9月26日中國大陸國家統計局、科學技術部、財政部聯合發布之統計公報顯示,去(2012)年全中國投入在研究與試驗發展(R&D)之經費支出達人民幣(以下同)10,298.4億元,較前(2011)年增加1,611.4億元,成長約18.5%。而大陸地區之研究與試驗發展經費約佔其國內生產總值(GDP)之1.98%,較2011年的1.84%提高0.14個百分點。惟同期(2012年,即民國101年)我國研發經費總計為新台幣4,312.96億元,佔臺灣地區GDP比率為3.07%,較中國大陸1.98%之比率略高。   另據大陸統計公報顯示,在中國大陸10,298.4億元之研發經費內,用於「基礎研究」之支出為498.8億元,比2011年增長21.1%;在「應用研究」之經費則為1,162億元,增長13%;至於「試驗發展」經費支出則為最大宗,達8,637.6億元,增長19.2%。總體來說,大陸地區之基礎研究、應用研究和試驗發展3項,佔其研發經費總支出之比率分別為4.8%、11.3%和83.9%;而臺灣地區則是以基礎研究、應用研究及技術發展等3類為區分,在2011年時分別為9.7%、23.7%及66.6%,說明臺灣地區在基礎與應用研究2部份佔研發經費總支出之比率較中國大陸為高。   然而相關研發經費投入至後續產出專利、運用,能否有效結合,或因而強化國家競爭力、減少需用單位間之落差,已是兩岸或其他國家所關切的焦點。因此,為利知己知彼,除了瞭解競爭國家之資源投入情形外,其研發成果相關運用情形等,亦實值得我們後續觀察、研究。

TOP