日本經濟產業省公布「再生能源導入促進關聯制度改革小委員會報告書」

  日本經濟產業省「促進再生能源關連制度改革小委員會(再生可能エネルギー導入促進関連制度改革小委員会)」於2016年2月5日公布了報告書,該報告書集結了自2015年9月以來,共計13次的討論整理,未來FIT制度改革方向,將以此為根基。

  提出該報告的目的在於,達成最加能源構成方案(エネルギーミックス)之目標,於2030年導入22-24%之再生能源,冀望在最大限度導入再生能源,並與抑制國民負擔之間調合並存。

  該報告提出五大修正制度方針,分別簡述如下:

(一)針對未運行案件對應修正認證制度
(1) 進一步加強撤銷認證制度之報告徵收及聽證程序。
(2) 創設新認證制度,應確認該發電事業的實施可能性後,才得認定為FIT。

(二)促進長期安定發電的配套措施
(1) 事業者應做適當的檢查及維修、發電量定期報告,制定廢棄及回收等應遵守事項。若有違反情事,主管機關得發出改善命令或是取消認定資格。
(2) 確認並遵守所涉及之土地使用條例、公告認定資訊、提供地方政府建構計畫內容。

(三)導入成本效率
(1) 設定中長期之「收購價格」目標。
(2) 以Top Runner等方式決定具備「成本效率」之收購價格,亦即以最佳方式選擇。
(3) 賦課金減免制度為一個可持續的機制,同時透過活用賦課金以確保基金,並確認對象事業的節能方案及對國際競爭力的影響等(檢討減免率)。

(四)擴大導入開發週期長(リードタイムの長い)之電力
(1) 開發週期較長之電力,預先於數年前決定認證案件之收購價格。
(2) 進行環評期間減半(通常為3~4年)等必要規制改革。
(3) 於FIT認證前,得申請接續系統。
(4) 針對不同電力的挑戰檢討對應的支援方法

(五)擴大導入電力系統改革之優勢
(1) 基於「廣域系統整備計畫」,計畫性地推動整備廣域系統。
(2) 對應區域系統之限制,公告系統資訊以及建設費用之單價。此外,繼續活用投標邀請規則(入札募集ルール),共同負擔系統升級費用。
(3) FIT收購義務人由零售事業者轉換為輸配電事業者,並促進全國區域間電力調配(広域融通)之順暢性。收購後之電力,得經由交易市場外直接輸送予零售事業者。
(4) 整備再生能源事業者間公平之輸出控制規則(公平な出力制御ルール)。

相關連結
※ 日本經濟產業省公布「再生能源導入促進關聯制度改革小委員會報告書」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7194&no=67&tp=1 (最後瀏覽日:2025/12/17)
引註此篇文章
你可能還會想看
日本公布設立AI安全研究所與著手訂定AI安全性評鑑標準

日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下: 1.訂定涵蓋《廣島AI進程》之政策框架(Framework) 2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle) 3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct) 為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下: 1.進行AI安全性評鑑之相關調查 2.研擬AI相關標準 3.研擬安全性評鑑標準與實施方式 4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI) 另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。

歐盟「人工智慧法」達成政治協議,逐步建立AI準則

歐盟「人工智慧法」達成政治協議, 逐步建立AI準則 資訊工業策進會科技法律研究所 2023年12月25日 隨著AI(人工智慧)快速發展,在各領域之應用日益廣泛,已逐漸成為國際政策、規範、立法討論之重點。其中歐盟人工智慧法案(Artificial Intelligence Act, AI Act,以下簡稱AIA法案)係全球首部全面規範人工智慧之法律架構,並於2023年12月9日由歐洲議會及歐盟部長歷史會達成重要政治協議[1],尚待正式批准。 壹、發佈背景 歐洲議會及歐盟部長理事會針對AIA法案已於本年12月9日達成暫時政治協議,尚待正式批准。在法案普遍實施前之過渡期,歐盟執委會將公布人工智慧協定(AI Pact),其將號召來自歐洲及世界各地AI開發者自願承諾履行人工智慧法之關鍵義務。 歐盟人工智慧法係歐盟執委會於2021年4月提出,係全球首項關於人工智慧的全面法律架構,該項新法係歐盟打造可信賴AI之方式,將基於AI未來可證定義(future proof definition),以等同作法直接適用於所有會員國[2]。 貳、內容摘要 AIA法案旨在確保進入並於歐盟使用之AI人工智慧系統是安全及可信賴的,並尊重人類基本權利及歐盟價值觀,在創新及權利義務中取得平衡。對於人工智慧可能對社會造成之危害,遵循以風險為基礎模式(risk-based approach),即風險越高,規則越嚴格,現階段將風險分為:最小風險(Minimal risk)、高風險(High-risk)、無法接受的風險(Unacceptable risk)、特定透明度風險(Specific transparency risk)[3]。與委員會最初建議版本相比,此次臨時協定主要新增內容歸納如下: 臨時協議確立廣泛域外適用之範圍,包含但不限於在歐盟內提供或部署人工智慧系統的企業[4]。但澄清該法案不適用於專門用於軍事或國防目的之系統。同樣,該協定規定不適用於研究和創新目的之人工智慧系統,也不適用於非專業原因之個人AI使用。 臨時協議針對通用AI(General purpose AI)[5]模型,訂定相關規定以確保價值鏈之透明度;針對可能造成系統性風險之強大模型,訂定風險管理與重要事件監管、執行模型評估與對抗性測試等相關義務。這些義務將由執委會與業界、科學社群、民間及其他利害關係人共同制定行為準則(Codes of practices)。 考量到人工智慧系統可用於不同目的之情況,臨時協議針對通用AI系統整合至高風險系統,並就基礎模型部分商定具體規則,其於投放市場之前須遵守特定之透明度義務,另強調對於情緒識別系統有義務在自然人接觸到使用這種系統時通知他們。 臨時協議針對違反禁止之AI應用,罰款金額自3,500萬歐元 或全球年營業額7%(以較高者為準)。針對違反其他義務罰款1,500萬歐元或全球年營業額3%,提供不正確資訊罰 款750萬歐元或全球年營業額1.5%。針對中小及新創企業違反人工智慧法之行政罰款將設定適當之上限。 參、評估分析 在人工智慧系統之快速發展衝擊各國社會、經濟、國力等關鍵因素,如何平衡技術創新帶來之便利及保護人類基本權利係各國立法重點。此次歐盟委員會、理事會和議會共同對其2021年4月提出之AIA法案進行審議並通過臨時協議,係歐洲各國對於現下人工智慧運作之監管進行全面的討論及認可結果,對其他國家未來立法及規範有一定之指引效果。 此次臨時協議主要針對人工智慧定義及適用範圍進行確定定義,確認人工智慧系統產業鏈之提供者及部署者有其相應之權利義務,間接擴大歐盟在人工智慧領域之管轄範圍,並對於人工智慧系統的定義縮小,確保傳統計算過程及單純軟體使用不會被無意中禁止。對於通用人工智慧基礎模型之部分僅初步達成應訂定相關監管,並對基礎模型之提供者應施加更重之執行義務。然由於涉及層面過廣,仍需業界、科學社群、民間及其他利害關係人討論準則之制定。 面對AI人工智慧之快速發展,各國在人工智慧之風險分級、資安監管、法律規範、資訊安全等議題持續被廣泛討論,財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境,將持續觀測各國法令動態,提出我國人工智慧規範之訂定方向及建議。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI,https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai (last visited December 25, 2023). [2]European Commission, Commission welcomes political agreement on Artificial Intelligence Act,https://ec.europa.eu/commission/presscorner/detail/en/ip_23_6473 (last visited December 25, 2023). [3]Artificial intelligence act,P5-7,https://superintelligenz.eu/wp-content/uploads/2023/07/EPRS_BRI2021698792_EN.pdf(last visited December 25, 2023). [4]GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act,https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2 (last visited December 25, 2023). [5]General purpose AI-consisting of models that “are trained on broad data at scale, are designed for generality of output, and can be adapted to a wide range of distinctive tasks”, GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act,https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2(last visited December 25, 2023).

世界智慧財產權組織(WIPO)發布《2021年全球創新指數報告》

  世界智慧財產權組織(WIPO)於2021年9月20日發布了第14版的《全球創新指數報告》(Global Innovation Index, GII),本報告以81項指標對全球132個經濟體的創新生態系進行評鑑,前十名分別為瑞士、瑞典、美國、英國、韓國、荷蘭、芬蘭、新加坡、丹麥、德國,亞洲表現最好的是韓國。   本報告指出,在COVID-19疫情期間,世界各國政府和企業對創新的投資並未減少,且健康相關產業、綠色相關產業、數位科技相關產業最受到矚目。   此外,今年的報告中新增了一個專章「全球創新追蹤」(global innovation tracker),其中針對科學與創新投資(science and innovation investments)這一組指標進一步的分析發現,2020年全球在科學出版數量增加了7.6%、在研發支出增加了8.5%、在創業投資增加了5.8%、在國際專利申請數量增加了3.5%。與2019年相比,國際專利申請數量以中國大陸增加16%最多,美國、韓國的申請數量也都穩定成長,但日本與多數歐洲國家的申請數量皆屬下降;而專利申請的技術領域以醫療技術、製藥技術、生物技術為主。整體而言,雖然疫情為全球經濟帶來嚴峻挑戰,但各國對於科學與創新的投資經費仍持續增加。

英國資料倫理與創新中心提出「議題速覽-深度偽造與視聽假訊息」報告

  英國資料倫理與創新中心(Centre for Data Ethics and Innovation, CDEI)於2019年10月發布「議題速覽-深度偽造與視聽假訊息」報告(Snapshot Paper - Deepfakes and Audiovisual Disinformation),指出深度偽造可被定義為透過先進軟體捏造特定人、主題或環境樣貌之影片或聲音等內容。除取代特定主體之臉部外,其亦具備臉部特徵重塑、臉部生成與聲音生成之功能。而隨相關技術逐漸成熟將難辨網路視聽影像之真偽,故CDEI指出有必要採取相關因應措施,包含: 一. 立法 許多國家開始討論是否透過訂立專法因應深度偽造,例如紐約州眾議院議員提出法案禁止特定能取代個人臉部數位技術之應用,美國國會亦有相關審議中草案。然而,縱有法律規範,政府仍無法輕易的辨識影片製造者,且相關立法可能抑制該技術於正當目的上之應用,並導致言論自由之侵害,故未來英國制定相關制度之制定將審慎為之。 二. 偵測 媒體鑑識方法於刑事鑑識領域已實行多年,其也可以運用於辨識深度偽造。媒體鑑識方法之一為檢查個體是否有物理上不一致之現象,以認定特定證物是否經竄改,包括拍攝過程中被拍攝對象是否眨眼,或皮膚上顏色或陰影是否閃爍。雖目前英國相關鑑識專家對於媒體鑑識方法是否可辨識深度偽造仍有疑義,惟相關單位已經著手發展相關技術。 三. 教育 教育亦為有效因應深度偽造之方法。目前許多主流媒體均開始喚起大眾對於深度偽造之意識,例如Buzzfeed於去年即點出5個方法以辨認有問題之影片。科技公司也開始投入公眾教育,提高成人網路使用者對於假訊息與深度偽造之辨識,然而報告指出其成效仍有待觀察。

TOP