美國華府行政管理與預算辦公室(Office of Management and Budget)頒布執行M-13-13 Open Data政策備忘錄之指導綱要(Supplemental Guidance on the Implementation of M-13-13 “Open Data Policy-Managing Information as an Asset”),目的在於澄清問題及提供執行細節以協助政府部門實施執行命令第13642號及M-13-13 Open Data政策備忘錄。透過實踐本指導綱要,各政府部門將能確保用以盤點、管理及開放資料的基礎設施之完備,進而開創因開放資料所產生之價值。 資料在依據本綱要進行盤點時,主管機關必須一併予以分級,其近用層級(Access Levels),區分為公開(Public)、限閱(Restricted Public)、非公開資料(Non-public)。資料公開前會經過完整之隱私權保護及資訊安全事項檢視,無違反相關法律和政策規範者,始釋出予大眾。 針對備忘錄之五項執行要求,本指導綱要即分為五項對應指導,介紹如下: 1.建立及維運大型資料盤點目錄:目的在使聯邦政府部門建立清楚且完整之資料資產目錄,而在製作盤點目錄後,必須持續改進、維護資料,並以擴展、豐富、開放三種面向來評估檢視盤點目錄之成熟度。 2.建立及維運公開資料清單:為增進資料查詢之容易度及可用性,各部門須篩選上述資料盤點目錄中屬於公開層級或可以被公開之資料,並建立及發布公開資料清單,作為盤點目錄之子目錄,使民眾得以知悉現有公開資料,及接續地將被公開之資料。各部門基於裁量權,亦可決定是否列入限閱或非公開資料資產,使民眾能知悉該筆資料之存在以及近用該資料之程序。 3.建立用戶參與資料釋出程序:此程序將提供資料用戶參與促進資料釋出及認定釋出之優先順序。由關鍵的資料用戶來幫助聯邦政府認定資料資產價值,而被認定最高價值之資料將優先、快速釋出。 4.當資料無法釋出時,須以文件證明:政府部門必須確認資料經過完整之隱私權保護及資訊安全事項檢視,無違反相關法律和政策規範者,才能公開資料。當認定資料涉及違反上述規範時,則須以文件證明其諮詢該政府部門中所設之法律顧問單位(Office of General Counsel)或同類單位後之決定,再依據三種資料近用資層級予以分類。 5.指導綱要中要求列出各部門應該負責管理資訊之窗口。 原定11月1日為完備上述基礎設施建置之最後期限,然為因應美國自10月1日起聯邦政府關門,特寬限延期至11月30日;在11月30日後,各部門將於每季報告執行進展,而部門開放資料之績效將被列為跨部門優先追蹤對象。
「何謂行動健康?」行動健康是指利用行動應用程式與智慧手機、平板、或無線裝置等行動裝置結合,運用這些裝置的核心功能,如聲音、簡訊、定位系統、藍芽、或3G、4G行動通信技術等,作為健康照護用途,以提升傳統照護品質與管理健康,減少醫療成本耗費。倘若行動應用程式具有醫療用途,可用於診斷、治療、預防疾病等,則屬於醫療器材,且該應用程式通常為醫療器材之附件,或與行動裝置結合使用而成為醫療器材,對此則稱之為行動醫療。 隨著智慧聯網(IoT)的應用,國際間對於行動健康與醫療的發展日益著重,除了鼓勵創新研發之外,也紛紛制訂法規政策因應,包括美國食品藥物管理局(FDA)在2013年9月公布行動醫療應用程式指導原則(Mobile Medical Application, Guidance For Industry and Food and Drug Administration Staff),並於2015年2月修訂;歐盟2012年提出eHealth 行動計畫(eHealth Action Plan 2012-2020),並在2014年4月針對行動健康的管理規範議題開放各類相關人士進行公共諮詢,後續在2015年1月公布諮詢結果。我國亦在2015年4月公布醫用軟體分類參考指引,以提供產業開發產品、申請查驗登記之參考。 未來,行動健康與醫療的發展將持面臨挑戰,相關問題包括行動健康與行動醫療之區分標準、行動醫療應用程式與傳統醫療軟體之監管差異、行動健康應用程式開發使用之自律性規範、使用者或病人隱私與個人資料保護、以及在研發過程中涉及的研究倫理等議題。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
紐西蘭通過網路侵權三振法案紐西蘭於今年4月14日通過遏制線上非法檔案分享的著作權修正法案。甫通過的的修正法案廢除並取代了紐西蘭1994年著作權法92A條款。新法賦予著作權人可以向網路服務提供者提交侵權使用者的侵權證據,並要求網路服務提供者通知該使用者停止侵權行為之權利。若侵權使用者在三次通知後仍未停止侵權行為,則著作權人可以在著作權法院提出損害賠償請求,此一請求賠償金額最高可達1萬5千元紐幣。 而備受爭論的斷網措施,在本次修正法案中暫時被保留而未立刻生效,待觀察前述通知與損害補償機制是否能有效的遏制網路侵權行為,若前述機制仍無法達成制止侵權行為的效果時,斷網措施條款將由議會決定生效適用,賦予著作權人可以向地方法院請申請命令,強制網路服務提供者中止該侵權帳戶的網路服務,中止期間最高可達六個月。 該法案是在2010年2月23日在紐西蘭國會中第一次被提出。日前通過後,將於今年9月1日正式生效,惟手機網路服務部分,則延後於2013年10月才會納入適用範圍。