日本內閣官房所屬之健康‧醫療戰略室於2017年3月, 向國會提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》(医療分野の研究開発に資するための匿名加工医療資訊に関する法律案)。「健康‧醫療戰略室」係於2013年2月成立,並於同年8月根據《健康‧醫療推進法》設置「健康‧醫療戰略推進本部」。該部於2017年3月10日提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》,針對醫療資訊匿名加工業者進行規制,使他人可安心利用經過去識別化處理之資訊,以便促進健康、醫療方面之研究及產業發展,形成健康長壽社會。上開法案主要可分為兩個部份︰ 國家責任與義務︰政府應提出必要政策與制定基本方針。 匿名加工醫療資訊業者之認定︰該部份又可分為匿名加工醫療資訊業者(以下簡稱業者)之認定與醫療資訊處理。 針對上述第2點之認定,為確保資訊安全,政府應設置認定機構,以便確認業者符合一定基準,並具備足夠之匿名加工技術,可為醫療個資去識別化。此外,在醫療資訊處理方面,該法案則規定醫療機關可在事先告知本人,且本人未拒絕提供時,將醫療資訊提供給業者。
歐盟發布電信單一市場改革草案歐盟執委員會於2013年9月提出新電信改革方案初步細節,期待建立歐盟電信服務單一市場,以加快經濟增長,創造就業機會和恢復歐洲在行動通訊技術領域的領先地位。 該提案將擴大歐盟的電信管制權力,協調各會員國管制機關,包括審查各會員國之國家電信發展政策、無線頻的釋出和拍賣頻,使會員國管制機關撤銷違反歐盟法律的作為。 歐盟內部之電信漫遊價格上限將維持,但將由2014年開始逐年降低;另外將於2014年推動漫遊時,接收來電免費。為了進一步促使降低漫遊價格,歐盟計劃鼓勵各家電信業者推出泛歐的通訊費率。這將形成一個類似的跨國電信營運許可,只要獲得歐盟內某一個會員國管制機關的許可後,便能在泛歐範圍內推出電信服務。歐盟也希望看到各會員國固網電信的價格持續下降,達到與國內長途電話同樣水平的價格。 執委會也在該草案中提出,將致力於規範寬頻網路接取的批發價格管制,以及其他各類行電信服務批發市場的管制。此外,歐盟將推動完整的、統一的消費者保護規則,以防止各會員國管制機關的保護不足。 為了鼓勵更快地釋出無線頻譜資源,歐盟希望制定授權釋出頻譜的共同規則,而且也將以獎勵誘因鼓勵市場參與者釋出頻譜用於行動寬頻市場,並且將建議如果頻譜使用效率過低,業者將可能被取消執照。電信業者也將被允許一定的頻譜交易,以鼓勵歐盟基礎設施交易。 最後該草案針對「網路中立」的問題也提出解決方案,將禁止電信市場的競爭業者之間,有將網路服務阻斷或降低網路傳輸優先權的舉措。電信業者將需要提供的更透明的寬頻網路連線實際速率資訊,降低「誤導性的廣告」損害消費者權益。然而,電信業者也能夠提供更高的連線速度,或較佳的網路傳輸品質保證,使客戶支付較高的價格取得較優質的服務。 歐盟認為歐洲的戰略利益和經濟進步,與泛歐電信單一市場的建立密不可分的,同時希望藉由本次改革,提供歐盟公民充分、公平、高品質、普及的網際網路與行動通訊服務。
日本財務省研擬要求企業以電子方式申報法人稅和消費稅日本納稅作業效率和全世界其他先進國家相比仍然偏低,根據世界銀行之調查,日本企業每年花費納稅作業的時間約330小時,是OECD會員國平均時間的1.9倍。為有效提高企業處理稅捐事務作業之效率,日本財務省研擬要求企業申報法人稅和消費稅時必須以電子方式進行,目標是在今年6月前提出具體草案,納入2018年度的稅制改正大綱。 日本自2004年起開辦法人及自然人透過網路申報納稅,各地稅務署可透過國稅綜合管理(SKS)系統讀取申報書類並取得其內容,且由於相關申報書類依法應保存9年,利用電子申報方式可有效節省空間成本程序負擔。 以2015年為例,法人稅全年總申報件數約196萬件,其中已有75%是經由網路申報。但另一方面,資本額1億元以上的日本企業經由網路申報者則僅有52%,理由除了大企業多有自成一格的總務會計系統,以及普遍仍存在以收據等文件進行報帳的習慣外,佔稅收全體約4成的地方稅目前仍有許多地方政府尚未提供電子申報之服務也是重要原因,就此總務省亦將持續進行基礎設施之整建以克服此問題。 我國自1998年擘劃電子化政府起至今已邁入第五階段,為能達成「便捷生活」、「數位經濟」及「透明治理」三大目標以及「打造領先全球的數位政府」之願景,應可參考前述日本政府之各項作法。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。