歐盟執委會先前自2015年10月30日到2016年1月22日,針對其2016-2020年e政府行動計畫(eGovernment Action Plan)進行了公眾諮詢程序。執委會依據其公眾意見諮詢之初步分析,於2016年2月23日說明其2016-2020年的e政府行動計畫政策,將藉由公共行政管理措施(包含司法部分)的e化,實現歐盟數位單一市場的目標,提高跨境的互通性以及促進歐盟公民間的便捷交流。
歐盟執委會就該計畫目前有以下四項目標:
(1) 透過資通訊之技術促進公共管理措施的現代化。
(2) 藉由數位化的公共服務提高跨境行動(cross-border mobility)的可能。
(3) 加強行政單位與歐盟公民及企業間的數位互動交流(digital interaction)。
(4) 推動數位化的關鍵措施。
相關監測及措施期程的指標,執委會將於未來幾個月內再為詳細之說明。而所有e政府行動計畫均應依循下列原則進行:
(1) 數位化設定(digital-by-default):若其他可傳送服務之管道能選擇中斷服務或必須中斷服務時,行動措施應給予服務線上傳輸的特權。
(2) 跨境設定(cross-border by default):行動措施不應於歐盟內部市場製造新的跨境障礙。
(3) 一次性原則(once-only principle):行動措施應僅得於行政單位從未持有數據或資訊時,要求歐盟公民或企業提供該數據或資訊。
(4) 內含設定(inclusive by default):行動措施應促進所有歐盟公民或企業與公共行政單位的互動交流。
(5) 不保留原則(no legacy principle):超過15年的基礎設施或應用服務不再維護保留。
(6) 隱私及資料保護(privacy & data protection):所有數位化的公共服務皆應就個人資料之基本權利為完善的保護。
(7) 開放及透明化設定(open & transparency by default):行動措施應就重複使用及透明化為開放之設定。
手機大廠諾基亞( Nokia )將在下一代智慧手機的瀏覽器中,採用蘋果電腦的開放原始碼軟體。其預定在今年六月推出 Series 60 智慧手機軟體包,其中的瀏覽器將整合數個同於蘋果 Safari 網路瀏覽器的開放原始碼科技– WebCore 和 JavaScriptCore 。 Safari 是以開放原始碼 K Desk Environment 之 Konquerer 瀏覽器的 KHTML 與 KJS 為基礎。 諾基亞表示,採用開放碼軟體後,將更方便開發商修改定作其新瀏覽器,並將提供新的使用者功能。諾基亞並且表示,未來仍將與蘋果電腦合作開放原始碼軟體,並積極投入開放原始碼社群。諾基亞對開放原始碼的興趣,在瀏覽器部門特別明顯。兩年前,該公司投資 Mozilla 基金會的 Minimo 計劃,創造一種根據 Mozilla Gecko 翻譯引擎的電話瀏覽器。 Minimo 團隊準備在今夏推出針對微軟 Windows CE 作業系統的 0.1 版瀏覽器。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國提出「緊急應變與復原準則」強化災難時之應變規定英國內閣辦公室(Cabinet Office)於2013年10月29日提出「緊急應變與復原準則:依循2004年國民緊急應變法之不成文準則」(Emergency Response and Recovery: Non statutory guidance accompanying the Civil Contingencies Act 2004),針對「應變與復原」作相關規定,以補充內閣辦公室於2006年1月1日提出「緊急準備規則」(Emergency Preparedness)對複合式緊急管理(Integrated emergency management, IEM)規定的不足之處。 英國「2004年國民緊急應變法」(The Civil Contingency Act 2004),為英國處理緊急事件之主要依據,「緊急應變與復原準則」即根據「2004年國民緊急應變法」制訂。此規則於「緊急應變章節」規定地方政府之緊急事件依嚴重程度區分為三級:銅(Bronze),僅需要操作指揮(Operational)、銀(Silver),需要策略指揮 (Tactical)、金(Gold),需要戰略指揮(Strategic),用以判斷是否區需要跨機關合作來因應緊急事故。如事故屬於重大緊急災難時,則屬於需要跨機關協調合作,藉由層級指揮及指令下達掌控應變程序與資訊傳遞,以因應長期及廣泛區域之災難。中央政府的權責在於全國性重大緊急事件,並且災難發生時之首相為最高行政首長,最高緊急機構為「內閣緊急應變會議」(Cabinet Office Brifing Rooms, COBR,又稱為眼鏡蛇),同時國民緊急秘書處(Civil Contingencies Secretariat, CCS)也需要協調跨部門及跨機構事務。 為提升災難應變與復原效率,2013年10月的「緊急應變與復原準則」,說明藉由地方的地方抗災議會(Local Resilience Forum)到中央等全國性之系統與網路串聯以傳遞緊急訊息,並建立三種層級之共同認知資訊圖像(Common Recognized Information Picture, CRIP),包括地方層級、區域以及國家級。此項系統必須足以傳遞並收集來自各方的大量資訊、能評估所收集各資料之性質,如緊急性、關聯性、說明性及可使用性等,並且能夠使大眾週知。 然,處理資料的過程仍有可能面臨數種問題,包括各機關之資料不同、判斷不同、理解錯誤及通訊超載等。2013年10月緊急應變與復原準則亦說明建立資訊管理系統(information management system)並安裝至多機構緊急管理中;而民間機構也應作為多機構之一環,並擔任資訊管理機構。同時,在共享資料之同時,必須注意資料保護,因此必須遵守「資料保護與共享-緊急計畫人與應變人準則」(Data Protection and Sharing-Guidance for Emergency Planner and Responders)。英國地域性與台灣近似,皆屬易於發生水患的國家,英國在緊急災難之應變於各方面的法制皆以趨於完善,殊值得持續觀察未來發展方向。
美國聯邦巡迴上訴法院判決 FCC無權要求網路中立性2010年4月6日美國聯邦哥倫比亞巡迴上訴法院於Comcast v. FCC一案中,判決美國聯邦通訊傳播委員會(FCC)要求網路服務供應商(ISP )對所有形式資料傳輸一視同仁的「網路中立性」要求係逾越權限,有違法律保留原則。此裁判將為美國大型網路內容提供業者(ICP)的經營模式及網路使用者上網習慣投下震撼彈。 網路中立性(Net Neutrality)係指同一ISP應公平地處理所有網路服務,不得因頻寬需求而有差別待遇。查原因案件乃業者Comcast禁止某些用戶透過網路點對點(peer-to-peer)的方式,傳輸大型影音檔案,其認為用戶這種做法會佔用過多頻寬,拖累其他用戶的網路速度;FCC則認為Comcast此舉違反了網路中立性。 在判決書中,哥倫比亞巡迴上訴法院援引判決先例(stare decisis),認為立法者課予FCC必須對全美人民提供一「公平、有效率、公正分配」的廣電服務。惟本案FCC擅以立法者未明確授權的網路中立性作為規制準則,逾越其管制權限而違法。 FCC發言人Jen Howard表示:「法院沒有道理否定保障網路自由與開放的重要性,也不該阻止其他可促成這個重要目的的方法。」此判決對諸多大力提倡網路中立性的大型ICP業者,無疑是一大打擊;ISP將來也可能對消費者依照資料傳輸流量分級收費(即tiered service),形成新的網路服務發展型態。FCC目前正極力爭取立法者通過「網路中立性法案」尋求管制的合法性,後續發展值得注意。