聯邦巡迴上訴法院確認同為蘋果供應商的玉晶光並未侵害大立光的專利權

  2013年6月4日大立光在北加州聯邦地方法院起訴玉晶光,主張玉晶光生產的八款透鏡侵害其五件美國專利。就部分的產品玉晶光請求法院裁判無引誘侵權,北加州聯邦地方法院部分准許了玉晶光的請求,之後大立光就無引誘侵權部分上訴聯邦巡迴法院敗訴。

  大立光未能主張直接侵權,因為玉晶光絕大部分的透鏡是銷售給蘋果在亞洲的供應鏈中的鏡頭模組廠,鏡頭模組廠再販售給亞洲的系統組裝廠,最後由系統組裝廠整機出售給蘋果,再由蘋果販賣給美國的消費者。這個過程中玉晶光並非唯一的透鏡供應商,大立光也是供應商之一甚至供應量大於玉晶光。

  法院贊同並認為引誘侵權是行為人(本案中為蘋果)被引誘而有直接侵權的證據,但大立光在本案中無法證明玉晶光有引誘侵權責任,因玉晶光沒有在美國有直接製造、使用、銷售、許諾銷售或進口的行為,故不構成直接侵權,而玉晶光在本案中並不爭執侵害大立光的專利權,但主張並非是引誘侵權人。

  大立光另提出的主張是蘋果的供應鏈是「隨機選擇」大立光或玉晶光的透鏡,因此推論蘋果在美國的產品採用玉晶光的比例,等於蘋果在全世界的產品採用玉晶光的比例,進而認定蘋果在美國有直接侵權。唯聯邦巡迴上訴法院認為大立光關於「隨機選擇」這個主張,沒有提出來自供應鏈的相關證據,所以沒辦法證明蘋果在美國的產品有使用玉晶光的透鏡。大立光可再上訴美國最高法院。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
※ 聯邦巡迴上訴法院確認同為蘋果供應商的玉晶光並未侵害大立光的專利權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7251&no=0&tp=1 (最後瀏覽日:2025/12/05)
引註此篇文章
你可能還會想看
知名歌手Bruce Springsteen拒絕與美國作曲家、作詞家、出版商協會共同要求康諾利酒吧和餐館支付著作權授權費用

  美國作曲家、作詞家、出版商協會American Society of Composers, Authors and Publishers (以下簡稱協會)與知名搖滾歌手Bruce Springsteen(以下簡稱Springsteen),和流行歌曲作者Clinton Ballard, Jr.對於紐約州的康諾利酒吧和餐館提出訴訟,原因在於酒吧和餐館沒有支付授權年費就允許樂團演奏Springsteen的歌曲。     當協會的代表發表此一聲明時,Springsteen實際上並不知道此一訴訟。Springsteen的代表指出:Springsteen事先並未被詢問是否要作為此案的原告,該協會是自作主張的將Springsteen列為此案的原告,而且即便協會事先詢問,Springsteen也不會同意作為此案的原告,也就是說不會提起此訴訟。     紐約每日新聞指出,因為協會並未獲得Springsteen的同意,Springsteen的名字應該會被移除。 協會資深副總裁Vincent Candilora(以下簡稱Candilora)表示,康諾利酒吧與餐館目前尚未發表任何聲明,而康諾利酒吧與餐館允許樂團於去年夏天演奏Springsteen的歌,但卻沒有支付授權年費給協會的行為可能會面臨三萬美元的罰金。   Candilora同時表示,為什麼這些有支付授權金的酒吧或餐館在有同樣法律約束的地區,要處於一個不利的競爭條件。提出此訴訟是給予有付授權費用的紐約酒吧一個公平的環境。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)

法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。

美國消費者金融保護局發布最終規則強化消費者金融資料控制權與隱私保護

.Pindent{text-indent: 2em;} .Noindent{margin-left: 22px;} .NoPindent{text-indent: 2em; margin-left: 38px;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國消費者金融保護局發布最終規則強化消費者金融資料控制權與隱私保護 資訊工業策進會科技法律研究所 2024年12月10日 美國消費者金融保護局(Consumer Financial Protection Bureau, CFPB)於2024年10月22日發布最終規則以落實2010年《消費者金融保護法》(Consumer Financial Protection Act, CFPA)第1033條規定之個人金融資料權利[1],該規則即通常所稱之「開放銀行」(Open Banking)規則。 壹、事件摘要 本次CFPB頒布最終規則旨在賦予消費者對其個人金融資料更大的權利、隱私與安全性。透過開放消費者金融資料,消費者得更自由地更換金融服務提供者以尋求最佳交易,從而促進市場競爭,並激勵金融機構精進其產品與服務[2]。 貳、重點說明 最終規則要求資料提供者在消費者及授權第三方之請求下,提供消費者金融產品或服務相關資料,並應以消費者及授權第三方可使用之電子形式提供。最終規則亦制定標準,以促進資料標準化格式(standardized formats)之發展和使用,同時規範第三方近用消費者資料義務,包括對資料之蒐集、利用及保留限制。相關重點如下: 一、受規範機構主體 最終規則規範對象為資料提供者(data provider),包含銀行、信用合作社等存款機構(depository institution);發行信用卡、持有交易帳戶、發行用於近用帳戶設備或提供支付促進服務(payment facilitation service)等非存款機構[3]。值得注意者,最終規則將數位錢包(digital wallet)及支付應用程式(payment app)業者納入資料提供者範圍,亦即被廣泛使用的金融科技服務亦將受到開放銀行規範體系之約束。此外,資料提供者不得向消費者或第三方收取資料近用之費用。 二、受規範資料範圍 最終規則規範之資料範圍涵蓋:資料提供者控制或擁有之24個月內之歷史交易資訊、帳戶餘額、付款資訊、契約條款與條件、即將到期之帳單、以及基本帳戶驗證資訊(Basic account verification information)等[4],消費者得授權第三方近用此類資料。至於機密商業資訊、蒐集資料僅用於防止詐欺、洗錢,或為偵測或報告其他非法及潛在非法行為,又或基於其他法律要求保密之資訊,以及在正常業務過程中無法檢索之資料,則豁免最終規則之適用[5]。 三、消費者與開發者介面 根據最終規則,資料提供者須建立及維護兩個獨立的介面以利資料之近用,包含:消費者介面,例如提供消費者近用其資料之入口網站,以及授權第三方之開發者介面(developer interface),例如應用程式介面(Application Programming Interface, API),雖最終規則不要求使用任何特定技術,然仍要求資料提供者須以標準化機器可讀格式(Standardized and Machine-Readable Format)提供資料,介面功能要求須達每月最低99.5%之回應率(response rate)[6]。此類資訊須在每月最末日前揭露於資料提供者網站上。此外,介面之設計須遵守《美國金融服務業現代化法》(The Gramm-Leach-Bliley Act, GLBA)」及聯邦貿易委員會(Federal Trade Commission, FTC)之《消費者資訊保障標準》(Standards for Safeguarding Customer Information)等消費者資料保護法規義務[7]。 四、授權第三方之行為義務 授權第三方(authorized third party)為代表消費者向資料提供者請求近用資料,藉以提供消費者產品或服務者。為解決隱私與資料安全問題,該規則對尋求近用消費者資料之第三方提出數項要求[8],包含但不限於: (一)知情同意之取得 第三方須取得消費者明確知情同意(express informed consent),以便代表消費者近用資料。 (二)資料利用之限制 第三方須確保將其資料之蒐集、利用及保留限制在提供消費者所請求的產品或服務之合理必要範圍內。就此部分,精準廣告(targeted advertising)、交叉銷售(Cross-selling),以及銷售資料並非提供產品或服務之合理必要範圍。 (三)遵守聯邦法規 第三方須依GLBA第501條規定或FTC之《消費者資訊保障標準》確保在其系統中採用「資訊安全計畫」(information security program)。 (四)政策與程序文件要求 第三方應擁有合理書面政策和程序,以確保從資料提供者處準確接收資料,並提供於其他第三方,即資料正確性之確保。 (五)資料撤回權之確保 第三方應向消費者提供撤回第三方授權之方法,撤回過程須簡易明瞭。在第三方收到消費者撤回授權之請求時,應通知資料提供者以及已向其提供消費者資料之其他第三方。 (六)第三方監督義務 第三方應透過契約要求其他第三方在向其提供消費者資料前遵守特定第三方法定義務。 (七)資料保存期限 消費者資料之保存期限最長為一年。若繼續蒐集,第三方應取得消費者重新授權。若消費者不提供重新授權或撤回授權,第三方應停止資料之蒐集,並停止利用與保留先前蒐集之資料。 五、實施日期 最終規則將依機構資產規模分階段實施[9],最大規模之機構(資產總額為2500億美元以上之存款機構資料提供者,以及在2023年或2024年任一年中,總收入達到100億美元以上之非存款機構資料提供者)須在2026年4月1日前遵守最終規則。對於規模最小之機構(資產總額低於15億美元但高於8.5億美元之存款機構資料提供者)須於2030年4月1日前遵守該規則。另總資產低於8.5億美元之存款機構不受該規則限制,以減輕小型銀行及信用合作社合規負擔。 參、事件評析 CFPB之CFPA第1033條最終規則將重塑美國金融市場之監理格局,由市場驅動之開放銀行框架走向由政府透過法規實質監理之管制措施,要求業者開放消費者資料。值得留意者,歐盟執委會(European Commission)2023年6月推出之「金融資料近用」(Financial Data Access, FiDA)草案[10]亦基於消費者賦權理念,強化消費者對其資料權利之控制權。由此可觀察國際間金融資料利用與監理規範逐漸走向以消費者資料自主為中心之法制架構,當代金融資料監理趨勢或值得我國主管機關及業者留意關注,除可作為我國金融資料法制與政策制定之參考,亦供我國企業布局全球化金融服務提前作好準備。 [1]Required Rulemaking on Personal Financial Data Rights, 89 Fed. Reg. 90838. [2]Consumer Financial Protection Bureau, CFPB Finalizes Personal Financial Data Rights Rule to Boost Competition, Protect Privacy, and Give Families More Choice in Financial Services, available at https://www.consumerfinance.gov/about-us/newsroom/cfpb-finalizes-personal-financial-data-rights-rule-to-boost-competition-protect-privacy-and-give-families-more-choice-in-financial-services/(last visited Dec. 5, 2024). [3]12 C.F.R. § 1033.111. [4]12 C.F.R. § 1033.211. [5]12 C.F.R. § 1033.221. [6]12 C.F.R. § 1033.311. [7]See id. [8]12 C.F.R. § 1033.421. [9]12 C.F.R. § 1033.121. [10]Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on a framework for Financial Data Access and amending Regulations (EU) No 1093/2010, (EU) No 1094/2010, (EU) No 1095/2010 and (EU) 2022/2554.

TOP