創意產業之發展在中國,具有相當之重要性。在出版物、音樂、電影、電視和遊戲軟件開發等創意相關產業,已占中國GDP 5%以上。2016年4月中國最大的搜尋引擎公司「百度」與國際出版商版權保護聯盟(IPCC)簽署版權保護合作備忘錄。IPCC為多間國際出版公司參與的非營利性組織,由於侵權盜版行為再中國日益嚴重,IPCC積極的向中國國內的網路平台公司洽談合作意願。
中國百度為了減少網路侵權作品的擴散,透過技術在作品原創性、正版與維權上,開發防盜版系統及線上投訴管道。百度公司與IPCC透過定期的資訊交流,除了在版權保護上合作,雙方也將繼續針對搜尋內容之正版化合作,此舉提升百度搜尋引擎在內容上的豐富性,同時也意味著中國在知識產權上更向前了一步。
IPCC除了與百度簽署版權保護協議外,也針對網路上具有侵權之網站應列表與仿冒品之跨境執法問題上提出意見交流。另外在政策面上,針對涉及中國正在進行的著作權修法議題,包括著作權集中授權、藝術家之轉售權、著作權的例外與限制及音樂視聽著作權進行討論。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
歐盟執委會通過下世代接取網路管制建議歐盟在今年5月19日公布的數位議程(Digital Agenda)中,設定了多項寬頻建設目標,包括所有歐洲民眾於2013年均能擁有基本寬頻, 2020年擁有30Mbps以上的高速寬頻,與50%以上的歐盟家戶擁有100Mbps以上的超高速寬頻。為達成此項目標,歐盟執委會於今年9月20日提出了採納下世代網路管制建議(Commission Recommendation on regulated access to Next Generation Access Networks(NGA))、提出未來五年的無線電頻譜政策計畫,與鼓勵公、私部門進行寬頻網路投資等三項主要推動措施。 在NGA管制建議正式公布前,執委會曾於2008年與2009年兩度就建議草案進行公開資詢。執委會認為,此一建議除了可提升管制明確性,避免管制假期(regulatory holidays)外,並在鼓勵投資與維護競爭間取得適當平衡,其重要管制原則如下: 1. 管制者對於獨占業者之光纖網路接取進行成本訂價管制時,應藉由風險溢價(risk premium)充分反應投資風險,使投資者能獲取具吸引力之利潤。 2. 管制者應採取適當的接取管制措施,促使新進業者進入市場,使其可依投資階梯(ladder of investment)逐步建置其自有網路,促進基礎設施競爭。 3. 管制者所採取之事前管制措施,應反映個別市場與城鄉區域之市場競爭差異。 4. 管制建議強烈支持NGA網路的共同投資,並對長期或大量的光纖迴路接取合約,允許在一定條件下給予價格折扣。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
世界智慧財產權組織發布2020世界智慧財產權指標報告,世界專利申請數於近十年首度下降世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年12月7日發布2020年世界智慧財產權指標報告(World Intellectual Property Indicators 2020, WIPI 2020)。WIPI年度報告蒐研分析150個國家及地區的智財統計資料,作為商務人士、投資者、學界和創業家參考指標。該份報告顯示,全球的商標與設計專利的申請活動成長約5.9%和1.3%,然而受到了中國專利申請量下降的影響,2019年全球專利申請下降3%,這也是近10年來首度下降;若扣除中國不計,2019年全球專利申請數量成長2.3%。 該份報告除了彙整國際整體數據以外,依專利、商標、工業設計、植物品種、地理標示等不同主題分別統計。在專利部分,中國大陸國家知識產權局、美國專利商標局分別為收到專利申請提交數量之前兩名;接續為日本、韓國和歐盟。這五大智財當局合計占全球總數之84.7%。其中韓國、歐盟和美國申請數量均有成長,中國大陸申請數量下降達9.2%,亦為中國大陸24年來首度下降,報告說明其因為中國大陸改善申請案結構和申請品質之故,致中國大陸國內公民之申請量減少10.8%,而國外申請量仍保持成長。 另外在商標部分,受理申請數量最多之前六個國家分別為中國、美國、日本和伊朗和歐盟;而2018年到2019年間受理申請增加幅度最多者為巴西、越南、伊朗、俄國和土耳其。據估計,2019年全球有效商標註冊量為5820萬,較2018年成長15.2%,且中國就囊括約2520萬,其次為美國的280萬和印度的200萬。針對中國大陸商標和專利申請數量為世界之冠,引起全球關注,美國專利商標局(USPTO)亦在2021年1月13日發布研究報告,指出中國大陸商標和專利申請案數量可能源自政府補貼或其他非市場因素的影響;其中又以政府補貼為刺激商標與專利申請案件數增長的最大可能原因。而這些非市場因素的商標及專利申請案件可能誤導世界對中國大陸創新能力的評估。 在工業設計(Industrial designs)方面,2019年全球提交136萬件設計專利申請,其中104萬件為工業設計;而中國大陸的工業設計申請量就囊括約71萬件。若以類型區分,和家具有關的設計專利比例為全球9.4%,其次是服裝(8.1%)以及包裝和容器(7.3%)。植物品種(Plant varieties)部分,中國大陸智財當局於2019年收到了7834種植物新品種申請,較2018年成長36%,同時也占全球植物品種申請的三分之一以上。地理標示(Geographical indications)部分,截至2019年和葡萄酒及烈酒有關的地理標示約為全球地理標示的56.6%,其次是農產品/食品(34.2%)和手工藝品(3.5%)。