為實現歐洲公民資料一致保護水準之期待,全面革新歐盟各會員國資料保護規範的一般資料保護規則(General Data Protection Regulation, GDPR),已於2016年4月14日由歐洲議會正式通過,且將在2018年5月25日生效,該規則異於資料保護指令(Data Protection Directive,95/46/EC)之處,在於規則無待各會員內國法化,得以直接適用,然而生效前的過渡期間,歐盟各國為因應新修正規則預作準備;近期,法國政府在「數位共和國」(République Numérique)法案中,欲修改現行關於資料保護之法律,如法國資料保護法(Loi Informatique et Libertes Act N°78-17 Of 6 January 1978),以達歐盟資料保護水準。
法國國民議會(Assemblée nationale)於2016年1月一讀通過,參議院(Sénat)隨後在5月提出修正案中第26 條之一(Article 26 bis A),要求個人資料應儲存於歐盟或法國境內的資料中心,同時為符合與歐盟的國際承諾會員國,並禁止個人資料傳輸至非歐盟的第三國,而參議院修法理由是為了確保法國規範符合歐盟資料保護水準,並依據先前歐盟法院關於安全港無效之判決的結果為修訂。
然而,資料在地化條款目前仍不明確,但此規定恐對資料傳輸設下更多限制;雖然在GDPR第23條規範關於各國決定限制權利和義務的範圍,資料傳輸至第三國並不在此列,故為加速修法程序,聯合調解委員會(Commission mixte paritaire)將於近期內審查調整,國民議會和參議院的代表仍能針對此條款提出意見以達成最終共識,後續修法值得關注。
歐盟法院(Court of Justice of the European Union, CJEU)於2023年12月14日對Gemeinde Ummendorf(C‑456/22)案作出判決。歐盟法院試圖釐清《歐盟一般個人資料保護規則》(General Data Protection Regulation, GDPR)第82條的民事求償規範中,資料主體受到非財產上的損害要到何種程度才可獲得賠償。 本案源自於兩位自然人原告與德國的烏門多夫市政府(Municipality of Ummendorf)之間的紛爭。2020年,烏門多夫市政府未經兩位原告同意情況下,在網路上公布市議會議程與行政法院判決,這些資訊內容均多次提及兩位原告的姓名與地址。兩位原告認為市政府故意違反GDPR,因此依據GDPR第82條請求市政府賠償,並進一步主張該條意義下的非財產損害,不需要任何損害賠償門檻。然而,市政府則持相反意見。 長久以來,德國法院傾向認為,GDPR的非財產上損害需要超過某個「最低損害門檻」才可獲得賠償。然而,承審法院決定暫停訴訟程序,並將是否應有「最低損害門檻」以及其基準為何的問題,提交給歐盟法院進行先訴裁定。 歐盟法院考慮到,GDPR的宗旨在於確保在歐盟境內處理個人資料時對自然人提供一致和高水準的保護,如要求損害必須達到一定的嚴重性閾值或門檻才可賠償,恐因為成員國法院認定的基準不同,進而破壞各國實踐GDPR 的一致性。因此,歐盟法院最後澄清,GDPR的民事賠償不需要「最低損害門檻」,只要資料主體能證明受有損害,不論這個損害有多輕微,都應獲得賠償。
英國資訊委員辦公室(ICO)進行監理沙盒初步公眾意見徵詢英國資訊委員辦公室(Information Commissioner's Office, ICO)2018年9月就監理沙盒為初步公眾意見徵詢,以瞭解其可行性。ICO監理沙盒之建立係依據英國2018-2021年科技策略(Technology Strategy for 2018-2021),並參考英國金融行為監理總署(Financial Conduct Authority, FCA)已成功發展之沙盒機制。ICO將提供組織於安全可控且不排除資料保護法規適用的環境下,以創新方式應用個資於開發創新產品與服務,並提供關於降低風險與資料保護設計(data protection by design)的專業知識和建議,同時確保組織採取適當安全維護措施。徵詢重點分為六部分: 障礙和挑戰(Barriers and Challenges):歐盟一般資料保護規則(General Data Protection Regulation, GDPR)或英國2018年資料保護法(Data Protection Act 2018, DPA18)之適用,以及ICO之監管方法,是否造成組織以創新方式應用個資於開發創新產品與服務之障礙或挑戰。 適用之可能範圍(Possible scope of an ICO Sandbox) 了解參與益處(Understanding the benefits of involvement) 機制(Sandbox mechanisms):於監理沙盒機制下不同階段提供指導,初期就如何解決資料保護相關問題提供非正式之指導(informal steers);中期提供法律允許與具適當保護措施之監管指導,如對參與者進入沙盒期間內非故意違反資料保護原則之行為,不會立即受到制裁之聲明函(letters of comfort)、確認組織未違反相關資料保護法規等;以及針對新興技術和創新特定領域,提供解決資料保護挑戰之預期指導(anticipatory guidance),如訂定相關行為準則(code of conduct)。 時機(Sandbox timings):包含開放申請進入沙盒時點、進入模式、是否彈性因應產品開發週期、測試階段期間等。 管理需求(Managing Demand):如設定優先進入沙盒領域、類型、設定參與者數量上限等。 該諮詢於10月12日結束,2018年底將公布結果,值得持續追蹤,以瞭解ICO監理沙盒未來之發展。 ICO亦接續於10月建立監管機關業務和隱私創新中心(Regulators’Business and Privacy Innovation Hub),與其他監管機關合作提供資料保護之專業知識,以確保法規與未來的技術同步發展;該中心也將與ICO監理沙盒共同推動,支持組織以不同方式使用個資開發創新產品和服務。
日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。