法國通過具爭議性的iTune法

  法國眾議院與參議院於 2006 06 30 通過倍受爭議的 iTune 法,其主要理念在闡述著作權法的設計應該要防止將音樂著作消費者侷限在僅能利用特定設備聽取音樂的藩籬中,而目前 iTunes 提供的音樂格式僅可利用 iPod 設備播放,明顯違反此一理念。


  眾議院原先通過之條文要求歌曲必須可以在任何設備上播放,但此一規範受到蘋果公司反對,認為如此規定將降低音樂檔案的安全性,而造成「鼓勵盜版」的結果。參議院為此修改規範內容,於規定中設計小部分空間賦予廠商可以運用
DRM 技術限制音樂於特定設備播放之音調;且若廠商獲得著作權人 ( 唱片公司及著作人 ) 之同意,仍得限制特定音樂格式僅得於特定設備中播放 ( 如: iTunes 的情況 )


  社會主義與綠黨之國會議員目前正針對此一規範提出違憲主張,若該主張無法成立,法國將成為歐洲訂定此一規範之先驅,預料其他歐洲國家將可能跟隨法國之腳步進行規範,如此情勢可以從挪威消費者保護官晚近作出之決議,認為
DRM 技術已破壞競爭法則,必須加以修正,以及其他國家包括丹麥、瑞典之類似決議窺知一二。

相關連結
※ 法國通過具爭議性的iTune法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=729&no=67&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
美國著作權局發布「具AI產出之著作註冊指引」,關鍵在人類智慧貢獻程度

美國著作權局(US Copyright Office,USCO)於2023年3月16日頒布「具AI產出之著作註冊指引」(Copyright Registration Guidance: Works Containing Material Generated by Artificial Intelligence),本指引之發布係由於近年美國著作權局時常收到人工智慧著作之註冊申請案,對於此類著作是否可以成功註冊,過去未有較明確之判斷準則,如此恐造成美國著作權體制之紊亂,著作權局遂發布本指引,以作為民眾申請註冊之著作包含利用AI創作內容時之指導依據。 本指引首先認定「著作人」之概念須為人類,此部分與美國憲法、美國著作權法及美國最高法院判例見解相同。 接著,本指引並描述到欲申請之著作,除前開之著作人須為人類外,人類須於該著作中傳達其原始精神理念(own original mental conception),不得為單純之透過機械運作所產生。惟此並非代表人類完全不得運用AI輔助創作,係取決於人類對該創作之創造性控制程度及該創作實際形成(Actually Formed)作者之傳統元素含量。 最後,本指引提出申請人於提出具AI產出著作時應提交之表格為標準表格(Standard Application),在創作者欄位中具體闡述人類作為作者之具體貢獻身份,且不能將AI列為作者或共同作者。至於在本指引發布前已提出之申請案,該指引提到申請人可以透過補充說明之方式,通知著作權局其著作中涉及AI產出部分,並就該部分聲明不專用,以符合新指引所要求之「揭露」。 綜觀以言,可以認定本指引之提出可作為著作人申請註冊時之遵循依據,初步解決過去未有AI著作申請註冊參考依據之弊病,然尚有許多細節待補充,且甚仰賴個案之判斷,惟本文認為未來隨AI科技之發展及廣泛利用,關「人類智慧」於著作貢獻程度更明確、更為具體之判斷標準勢必將應運而生,值得持續關注。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

美國《聯邦採購規則》(FAR)

  2019年8月7日,美國總務署(General Services Administration, GSA)、國防部(Department of Defense, DoD)及航空暨太空總署(National Aeronautics and Space Administration, NASA)共同發布一項暫行規定(interim rule),依據2019美國《國防授權法》(National Defense Authorization Act, NDAA)修正美國《聯邦採購規則》(Federal Acquisition Regulation, FAR),以公共及國家安全為由,禁止美國聯邦機構購買或使用包括華為、中興通訊、海康威視、海能達及大華科技等5家中國大陸企業、子公司與關係企業所提供之電信或視頻監控設備及服務。禁令並擴及經美國國防部長與國家情報局局長或聯邦調查局局長協商後,合理認為屬特定國家地區所擁有或控制之實體,或與該國家地區的政府有聯繫者。該暫行規定已於2019年8月13日生效,美國政府有權為不存在安全威脅的承包商提供豁免直至2021年8月13日。並預計在2020年8月,全面禁止美國聯邦機構與使用該中國大陸企業設備與服務之公司簽訂契約。   2019美國《國防授權法》第889(a)(1)(A)條,明文禁止美國聯邦機構採購或使用特定企業所涵蓋之電信設備或服務,並禁止將該類產品作為設備、系統、服務或關鍵技術的實質或必要組成。本次修正美國《聯邦採購規則》,即配合新增第4.21小節「禁止特定電信和視頻監控服務或設備的承包」,並於52.204-25中明訂「禁止簽訂與特定電信和視頻監視服務或設備契約」。故除非有例外或豁免,禁止承包商提供任何涵蓋特定中國大陸企業之電信設備或服務,作為設備、系統、服務或關鍵技術的實質或必要組成部分。承包商及分包商必須在契約履行過程中,報告有無發現任何使用此類設備、系統或服務之情形。

美國專利商標局發布「發明AI」分析報告,由美國專利申請趨勢分析AI技術普及情形

  美國專利商標局(USPTO)於2020年10月27日發布「發明AI:由美國專利觀察AI普及情形」(Inventing AI: Tracing the diffusion of artificial intelligence with U.S. patents)智財資料分析報告,本報告分析2002年至2018年共16年間美國AI專利之申請資料,發現在AI專利申請數量由3萬件成長至6萬件,成長幅度為100%,而在全體專利當中AI相關專利所占比率,也由原本的9%成長至接近16%,顯示在AI技術研發創新與普及率的顯著成長。   報告指出,自1950年圖靈(Alan Turing)提出「機器能否思考?」問題以來,現今AI技術的發展已經達到連圖靈也會讚嘆的水準,AI技術在發明領域的重要性益發提升,活躍於AI領域的發明人占全體專利權人的比率也從1976年的1%提升到2018年的25%,在組織的發明專利上也呈現相同的趨勢;除了美國銀行(Bank of America)、波音公司(Boeing)以及奇異電子(General Electric)之外,前30大頂尖的AI公司都來自資通訊領域,其中佔據首位者為擁有46,752項專利的IBM,其次為擁有22,076項專利的微軟以及10,928項專利的Google,而AI技術的應用領域也更加多元,並且與在地產業做結合,例如應用在奧勒岡州的健身訓練與設備以及北達科他州的農業上。   USPTO指出,經由專利資料分析顯示AI技術的發展不僅有顯著的成長,並逐漸與在地產業結合、落實在不同產業領域的多元應用,AI對於產業的影響力將不亞於電力或半導體,隨著AI領域發明人的顯著成長,未來將有更多AI技術在各領域的應用出現,而擴大AI影響力的關鍵在於發明者與公司能否成功將AI納入現有或新產品的功能、流程或服務之中。

TOP