為加強歐盟及各成員國的研究基礎設施合作,從發展政策方面,於2002年成立「歐洲研究基礎設施策略論壇」(European Strategy Forum on Research Infrastructures, ESFRI)協助各會員國統籌規劃RIs(Research Infrastructures, RIs)的發展藍圖。在法律層面,於2009年通過「第723/2009號歐盟研究基礎設施聯盟法律架構規則」(COUNCIL REGULATION (EU) No 723/2009 of 25 June 2009 on the Community legal framework for European Research Infrastructure Consortium (ERIC),使各歐盟會員國、夥伴國家、非夥伴國家之第三國家或跨政府國際組織等對於分散的RIs整合起來後,可向歐盟執委會提出申請,依該號規則取得法律人格,成立「歐盟研究基礎設施聯盟」(European Research Infrastructure Consortium, ERIC),且可為權利得喪變更之主體,更可與他方簽訂契約或成為訴訟當事人,使其具有自我經營管理之能力。
截至目前為止(2015年9月),歐盟的RIs正式成立11個ERIC,並且透過國際間合作將RIs做更有效率之使用。國際上近年來創新研發競爭激烈,歐盟執委會為了持續推動建置世界級歐洲研究區域(European Research Area, ERA),無論在資金面、政策面及法律層面均有積極作為,在強化歐盟RIs同時促進國際科技研發合作,俾使歐盟於研發創新的領域保持世界領導之地位,歐盟未來仍會持續推動各個重要研發領域的ERIC,ERIC對於整合歐盟各國重大RIs負有重要使命。
本文為「經濟部產業技術司科技專案成果」
美國紐約最大的珠寶公司Tiffany 於二○○四年向美國聯邦南紐約地方法院對全世界最大的拍賣網站eBay所提的商標侵權訴訟乙案,在該年度造成電子商務業界的一陣風暴。Tiffany 在起訴狀當中主張, eBay網站中所賣方所拍賣Tiffany的珠寶百分之七十三為仿冒品。雖然,Tiffany發函請求eBay移除刊登在eBay網站上,約一萬九千筆拍賣Tiffany仿冒品的網頁;但Tiffany仍提起訴訟主張eBay未對仿冒詐欺之情形盡監督之責,而造成該公司之營業損失,故須負起共同侵權責任。其它世界知名的精品公司,如 Louis Vuitton Moet Hennessy及Dior Couture也於二○○六年對eBay未盡監督之責而侵害其商標乙事在巴黎地方法院提起訴訟,並要求eBay賠償該兩大精品業者二○○一年至二○○五年之營業損失。 Tiffany的代表律師針對eBay所提起的答辯在六月一日提出補充意見狀表示,原起訴狀所主張的商標權範圍並未限定或引用特定的商標,因此eBay的主張無理由。 Tiffany v. eBay乙案,原定於今年 (二○○七年) 五月十四日在南紐約地方法院進行法官審判程序 (Bench Trail) ,但因五月八日承審法官下令進行訴訟和解程序而延期。今年四月中旬,Tiffany追加訴訟主張eBay侵害其所有的十一個包括Tiffany經典藍色的顏色、PALOMA PICASSO等商標。eBay對上開Tiffany的追加訴訟提出反對意見,主張Tiffany所追加主張eBay侵權的十一個商標未按正當程序提出,將會使得eBay因提出證據的時間不足而造成裁判偏頗之虞,故請求承審法官駁回Tiffany的追加訴訟。 按Tiffany追加eBay所侵害商標數目之目的,係為增加eBay的法定損害賠償義務;因為美國法律規定,商標侵權的法定損害賠償義務計算方式以所受侵害仿冒的商標商品或服務之種類為準,每一項美金一百萬元之賠償金。
歐盟將修正公部門資訊再利用(PSI)指令2019年1月22日,歐盟執委會(European Commission)、歐洲議會(European Parliament)與歐盟理事會(Council of the EU)就修正「公部門資訊再利用指令」(The Directive on the re-use of public sector information,PSI Directive)的提案達成協議。歐洲議會則於4月4日通過提案,待歐盟理事會簽署正式的指令。 PSI Directive經過2003年制定(Directive 2003/98/EC)、2013年修正(Directive 2013/37/EU),於2017年為了履行指令規定的定期審查義務,召開了公眾線上諮詢,之後歐盟執委會根據諮詢結果及對指令的影響評估,於2018年4月25日通過修訂指令的提案,並於2019年1月達成協議。 此次修正將該指令更名為「開放資料與公部門資訊指令」(The Directive on the Open Data and Public Sector Information,以下稱新指令),預計能排除目前仍存在的公部門資訊取得障礙,並且要求將政府資助研究所產出的研究資料(publicly funded research data)也開放給公眾。此次修正的重點內容如下: 1、所有依據國家取用文件規定(national access to documents rules)下可取用的公部門資訊,原則上可以免費再利用,或者公部門可以收取為了提供、傳播資料所產出的費用,但該費用以不超過邊際成本(marginal costs)為限。這項改變,將使更多的中小企業和新成立公司能順利進入資料經濟市場。 2、新指令特別指出統計資料或地理空間資料屬於高價值資料集(high-value datasets),這些資料集具有高商業潛力,可以加速各種資訊產品或增值服務的產出,例如人工智慧。而新指令特別要求這些資料集應免費提供、使機器可讀,且透過應用程式介面(APIs)使他人能取用。但經評估後發現免費提供會造成市場競爭扭曲時,則不在此限。 3、關於公營事業及公共運輸所產生的有價值資料,不在現行PSI Directive規範範圍內,而各國對於是否必須提供資料有著不同的規定,但現在都必須依照新指令的規定使公眾可以免費再利用,不過仍可設定合理規費來收回相關行政費用。 4、有些公部門與私人企業制定了複雜的資料協定,導致公部門資訊被壟斷,新指令則要求各會員國應落實資訊透明,以及限制公部門與私部門訂立排除其他人可再利用公部門資訊的協定。 5、促進公部門資訊以動態即時資料方式發布,並透過使用者介面(APIs)使更多動態即時資料能被使用。而這也將使企業發展創新產品或服務,例如行動APP。 6、關於政府資助的研究,新指令將促進「政府資助研究而產出的研究資料」能更容易的被再利用,故各成員國被要求建立一致的再利用政策,使這些研究資料能透過資料庫(repository)被開放取用(open access),包含先前已經存入該資料庫的資料。 總而言之,本次修正將能夠降低中小企業進入市場的障礙,並增加公部門資訊的透明度和即時流通,也使公營事業資訊及政府出資研究所產出的研究資料能納入開放資料的範疇。
ZeniMax控Oculus Rift VR竊取技術經陪審團判決應賠償美金5億元電子遊戲龍頭ZeniMax於2014年起訴虛擬實境公司Oculus VR,稱Oculus創辦人Palmer Luckey為改善初代虛擬實境體驗機「Rift」提供原型予在ZeniMax任職的John Carmack,嗣Carmack在該機器增加ZeniMax所有之虛擬實境專用關鍵軟體,ZeniMax就Luckey取得該公司軟體之內容與Luckey簽立保密協定。其後Luckey為募集Oculus資金,未經ZeniMax授權及參與,開始展示含有ZeniMax專有軟體之「Rift」,最後Facebook收購Oculus。 ZeniMax以Oculus、Luckey、Brendan Iribe(Oculus另一創辦人)、Carmack為被告,主張其等盜用營業秘密、侵害著作權、違反保密協定、不公平競爭、不當得利、商標侵權(包括未經許可使用以及錯誤指示商品來源),並列Facebook為共同被告主張其於收購Oculus即知情,連帶給付20億美元之損害賠償及40億美元之懲罰性賠償。本訴訟於2017年2月1日經陪審團認定Oculus違反保密協定、侵害著作權、錯誤指示商品來源侵害商標等共計賠償3億美元,Luckey及Iribe因錯誤指示侵害商標共計賠償2億美元。 以本案來看,Oculus及其創辦人最主要是未經ZeniMax同意而公開使用ZeniMax的程式碼且宣稱為其公司產出,關於這個部分公司未來在有運用他人公司技術之情形宜透過協商,以共同發表之方式避免侵害創作公司之權利;另創作公司雖未公開技術,然可透過保密協定使營業秘密獲得完善的保障;至於Facebook的部分更凸顯公司於併購前尤應強化盡職查核(Due Diligence),以免訟累。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」